viernes, 29 de enero de 2021

Descubren un insólito sistema de seis planetas a solo 200 años luz

Descubren un insólito sistema de seis planetas a solo 200 años luz

Los astrónomos creen que este sistema podría proporcionar pistas importantes sobre cómo se forman y evolucionan los planetas, incluidos los de nuestro sistema solar.


Sarah Romero 26/01/2021

Un equipo internacional de astrónomos (entre ellos científicos del Instituto de Astrofísica de Canarias), ha descubierto a 200 años luz de nosotros en la constelación Sculptor, un sistema de seis planetas un tanto singular, pues, cinco de ellos bailan a un extraño ritmo alrededor de su estrella central, TOI-178. [...] Los astrónomos encontraron que cinco de los seis planetas están bloqueados en un ritmo armónico, donde sus órbitas se alinean en un patrón consistente entre sí. Los cinco planetas externos están en una cadena de resonancia de 18:9:6:4:3. Una resonancia de 2:1 evidenciaría que por cada órbita del planeta exterior, la interior hace dos. En el caso de TOI-178, esto significa la desconcertante danza rítmica siguiente: por cada tres órbitas del planeta más externo, la siguiente hace cuatro, la siguiente hace seis, la siguiente hace nueve y la última (la segunda desde la estrella) hace 18. Clic AQUÍ para seguir leyendo y ver las imágenes.

Un desconcertante sistema de seis exoplanetas con movimiento rítmico desafía las teorías de cómo se forman los planetas

Un desconcertante sistema de seis exoplanetas con movimiento rítmico desafía las teorías de cómo se forman los planetas

25 de Enero de 2021

Utilizando una combinación de telescopios que incluye al Very Large Telescope, del Observatorio Europeo Austral (VLT de ESO), un equipo de astrónomos ha revelado la existencia de un sistema que consta de seis exoplanetas, cinco de los cuales bailan a un extraño compás alrededor de su estrella central. Los investigadores creen que el sistema podría proporcionar pistas importantes sobre cómo los planetas, incluidos los del Sistema Solar, se forman y evolucionan.

La primera vez que el equipo observó TOI-178, una estrella a unos 200 años luz de distancia, en la constelación de Sculptor, pensaron que habían visto dos planetas rodeándola en la misma órbita. Sin embargo, al echar un vistazo más de cerca, vieron algo completamente diferente. “Tras llevar a cabo más observaciones, nos dimos cuenta de que no había dos planetas orbitando la estrella a aproximadamente la misma distancia de ella, sino más bien múltiples planetas en una configuración muy especial”, dice Adrien Leleu, de la Universidad de Ginebra y la Universidad de Berna (Suiza), quien ha dirigido un nuevo estudio sobre este sistema publicado hoy en la revista Astronomy & Astrophysics.

La nueva investigación ha revelado que el sistema cuenta con seis exoplanetas y que todos, menos el más cercano a la estrella, son prisioneros de una rítmica danza mientras se mueven en sus órbitas. En otras palabras, están en resonancia. Esto significa que hay patrones que se repiten a medida que los planetas se mueven alrededor de la estrella, haciendo que algunos planetas se alineen cada pocas órbitas. Una resonancia similar se observa en las órbitas de tres de las lunas de Júpiter: Ío, Europa y Ganímedes. Ío, el más cercano de los tres a Júpiter, completa cuatro órbitas alrededor de Júpiter para cada órbita de Ganímedes, la más lenta, y dos órbitas completas por cada órbita de Europa.

Los cinco exoplanetas exteriores del sistema TOI-178 siguen una cadena de resonancia mucho más compleja, una de las más largas descubiertas hasta ahora en un sistema de planetas. Mientras que las tres lunas de Júpiter están en una resonancia de 4:2:1, los cinco planetas exteriores del sistema TOI-178 siguen una cadena de 18:9:6:4:3, es decir, mientras que el segundo planeta de la estrella (el primero en la cadena de resonancia) completa 18 órbitas, el tercer planeta desde el principio (segundo en la cadena) completa 9 órbitas, y así sucesivamente. De hecho, inicialmente los científicos sólo encontraron cinco planetas en el sistema, pero siguiendo este ritmo resonante calcularon dónde podría haber otro planeta adicional para buscarlo en cuando dispusieran de una ventana de observación.

Más que una curiosidad orbital, esta danza de planetas resonantes proporciona pistas sobre el pasado del sistema. “Las órbitas de este sistema están muy bien ordenadas, lo que nos dice que este sistema ha evolucionado de una forma suave desde su nacimiento”, explica el coautor, Yann Alibert, de la Universidad de Berna. Si el sistema hubiera sufrido perturbaciones importantes en los momentos iniciales de su formación, por ejemplo, por un gran impacto, esta frágil configuración de órbitas no habría sobrevivido.

Trastorno en el sistema rítmico

Aunque la disposición de las órbitas sea clara y bien ordenada, las densidades de los planetas “son mucho más desordenadas”, afirma Nathan Hara, de la Universidad de Ginebra (Suiza), quien también participó en el estudio. “Parece que hay un planeta tan denso como la Tierra justo al lado de un planeta muy esponjoso, con la mitad de la densidad de Neptuno, seguido de un planeta con la densidad de Neptuno. No es a lo que estamos acostumbrados”. En nuestro Sistema Solar, por ejemplo, los planetas están perfectamente dispuestos, con los planetas rocosos y más densos más cerca de la estrella central y los esponjosos planetas gaseosos de baja densidad más alejados.

Según Leleu, “Este contraste entre la armonía rítmica del movimiento orbital y las densidades desordenadas desafía sin duda nuestra comprensión de la formación y evolución de los sistemas planetarios”.

Combinando técnicas

Para estudiar la inusual arquitectura del sistema, el equipo utilizó datos del satélite CHEOPS, de la Agencia Espacial Europea, junto con el instrumento ESPRESSO, instalado en el telescopio VLT de ESO, y los telescopios NGTS y SPECULOOS, ambos situados en el Observatorio Paranal de ESO, en Chile. Dado que los exoplanetas son extremadamente difíciles de detectar directamente con telescopios, los astrónomos deben confiar en otras técnicas para detectarlos. Los principales métodos utilizados son los tránsitos por imágenes —observando la luz emitida por la estrella central, que se atenúa cuando un exoplaneta pasa delante de ella al observarla desde la Tierra— y las velocidades radiales— observando el espectro de luz de la estrella en busca de pequeños signos de bamboleos que ocurren a medida que los exoplanetas se mueven en sus órbitas. El equipo utilizó ambos métodos para observar el sistema: CHEOPS, NGTS y SPECULOOS para tránsitos y ESPRESSO para velocidades radiales.

Mediante la combinación de las dos técnicas, el equipo fue capaz de recopilar información clave sobre el sistema y sus planetas, que orbitan su estrella central mucho más cerca y mucho más rápido de lo que la Tierra orbita el Sol. El más rápido (el planeta más interior) completa una órbita en sólo un par de días, mientras que el más lento tarda unas diez veces más. Los seis planetas tienen tamaños que van desde aproximadamente uno hasta aproximadamente tres veces el tamaño de la Tierra, mientras que sus masas son de 1,5 a 30 veces la masa de la Tierra. Algunos de los planetas son rocosos, pero más grandes que la Tierra— estos planetas se conocen como Supertierras. Otros son planetas gaseosos, como los planetas exteriores de nuestro Sistema Solar, pero son mucho más pequeños (los apodados minineptunos).

Aunque ninguno de los seis exoplanetas encontrados se encuentra en la zona habitable de la estrella, los investigadores sugieren que, al continuar con la cadena de resonancia, podrían encontrar más planetas en esa zona o muy cerca. El Telescopio Extremadamente Grande (ELT) de ESO, que comenzará a funcionar esta década, podrá obtener imágenes directas de exoplanetas rocosos en la zona habitable de una estrella e incluso caracterizar sus atmósferas, proporcionándonos una oportunidad para conocer con mayor detalle sistemas como TOI-178.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico “Six transiting planets and a chain of Laplace resonances in TOI-178”, publicado en a revista Astronomy & Astrophysics.

El equipo está formado por A. Leleu (Observatorio Astronómico de la Universidad de Ginebra, Suiza [UNIGE], Universidad de Berna, Suiza [Berna]); Y. Alibert (Berna); N. C. Hara (UNIGE); M. J. Hooton (Berna); T. G. Wilson (Centro de Ciencias Exoplanetarias, Escuela SUPA de Física y Astronomía, Universidad de San Andrés, Reino Unido [St Andrews]); P. Robutel (IMCCE, UMR8028 CNRS, Observatorio de París, Francia [IMCCE]); J.-B Delisle (UNIGE); J. Laskar (IMCCE); S. Hoyer (Universidad Aix Marsella, CNRS, CNES, LAM, Francia [AMU]); C. Lovis (UNIGE); E. M. Bryant (Departamento de Física, Universidad de Warwick, Reino Unido [Warwick], Centro de Exoplanetas y Habitabilidad, Universidad de Warwick [CEH]); E. Ducrot (Unidad de Investigación en Astrobiología, Universidad de Lieja, Bélgica [Lieja]); J. Cabrera (Instituto de Investigación Planetaria, Centro Aeroespacial Alemán (DLR), Berlín, Alemania [Instituto de Investigación Planetaria, DLR]); J. Acton (Escuela de Física y Astronomía, Universidad de Leicester, Reino Unido [Leicester]); V. Adibekyan (Instituto de Astrofísica y Ciencias del Espacio, Universidad de Oporto, Portugal [IA], Centro de Astrofísica de la Universidad de Oporto, Departamento de Física y Astronomía, Universidad de Oporto [CAUP]); R. Allart (UNIGE); C. Allende Prieto (Instituto de Astrofísica de Canarias, Tenerife [IAC], Departamento de Astrofísica, Universidad de La Laguna, Tenerife [ULL]); R. Alonso (IAC, ULL); D. Alves (Camino El Observatorio 1515, Las Condes, Santiago, Chile); D. R Anderson (Warwick, CEH); D. Angerhausen (ETH Zúrich, Instituto de Física de Partículas y Astrofísica); G. Anglada Escudé (Instituto de Ciencias del Espacio [ICE, CSIC], Bellaterra, España, Instituto de Estudios Espaciales de Cataluña [IEEC], Barcelona, España); J. Asquier (ESTEC, ESA, Noordwijk, Países Bajos [ESTEC]); D. Barrado (Dpto. de Astrofísica, Centro de Astrobiología [CSIC-INTA], Madrid, España); S.C.C Barros (IA, Departamento de Física y Astronomía, Universidad de Oporto); W. Baumjohann (Instituto de Investigación Espacial, Academia Austriaca de las Ciencias, Austria); D. Bayliss (Warwick, CEH); M. Beck (UNIGE); T. Beck (Berna); A. Bekkelien (UNIGE); W. Benz (Berna, Centro para el Espacio y la Habitabilidad, Berna, Suiza [CSH]); N. Billot (UNIGE); A. Bonfanti (IWF); X. Bonfils (Universidad de Grenoble Alpes, CNRS, IPAG, Grenoble, Francia); F. Bouchy (UNIGE); V. Bourrier (UNIGE); G. Boué (IMCCE); A. Brandeker (Departamento de Astronomía, Universidad de Estocolmo, Suecia); C. Broeg (Berna); M. Buder (Instituto de Sistemas de Sensores Ópticos, Centro Aeroespacial Alemán (DLR) [Instituto de sistemas de Sensores Ópticos, DLR]); A. Burdanov (Lieja, Departamento de Ciencias de la Tierra, Atmosféricas y Planetarias, Instituto Tecnológico de Massachusetts, EE.UU.); M. R. Burleigh (Leicester); T. Bárczy (Admatis, Miskok, Hungría); A. C. Cameron (St. Andrews); S. Chamberlain (Leicester); S. Charnoz (Universidad de París, Instituto de Física del Globo de París, CNRS, Francia); B. F. Cooke (Warwick, CEH); C. Corral Van Damme (ESTEC); A. C. M. Correia (CFisUC, Departamento de Física, Universidad de Coímbra, Portugal; IMCCE, UMR8028 CNRS, Observatorio de París, Francia); S. Cristiani (INAF - Observatorio Astronómico de Trieste, Italia [INAF Trieste]); M. Damasso (INAF - Observatorio Astrofísico de Torino, Italia [INAF Torino]); M. B. Davies (Observatorio de Lund, Departamento de Astronomía y Física Teórica, Universidad de Lund, Suecia); M. Deluil (AMU); L. Delrez (AMU, Instituto de Investigación en Astrofísica, Ciencias y Tecnologías del Espacio [STAR], Universidad de Lieja, Bélgica, UNIGE); O. D. S. Demangeon (IA); B.-O. Demory (CSH); P. Di Marcantonio (INAF Trieste); G. Di. Persio (INAF, Instituto de Astrofísica y Planetología Espacial, Roma, Italia); X. Dumusque (UNIGE); D. Ehrenreich (UNIGE); A. Erikson (Instituto de Investigación Planetaria, DLR); P. Figueira (Instituto de Astrofísica y Ciencias del Espacio, Universidad de Oporto, ESO Vitacura); A. Fortier (Berna, CSH); L. Fossato (Instituto de Investigación Espacial, Academia de Ciencias Austriaca, Graz, Austria [IWF]); M. Fridlund (Observatorio de Leiden, Universidad de Leiden, Países Bajos, Departamento de Espacio, Tierra y Medio Ambiente, Universidad Chalmers de Tecnología, Observatorio Espacial de Onsala, Suecia [Chalmers]); D. Futyan (UNIGE); D. Gandolfi (Departamento de Física, Universidad de Torino, Italia); A. García Muñoz (Centro de Astronomía y Astrofísica, Universidad Técnica de Berlín, Alemania); L. Garcia (Lieja); S. Gill (Warwick, CEH); E. Gillen (Unidad de Astronomía, Universidad Queen Mary de Londres, Reino Unido, Laboratorio Cavendish, Cambridge, Reino Unido [Laboratorio Cavendish]); M. Gillon (Lieja); M. R. Goad (Leicester); J. I. González Hernández (IAC, ULL); M. Guedel (Universidad de Viena, Departamento de Astrofísica, Austria); M. N. Günther (Departamento de Física e Instituto Kavli de Astrofísica e Investigación Espacial, Instituto Tecnológico de Massachusetts, EE.UU.); J. Haldemann (Berna); B. Henderson (Leicester); K. Heng (CSH); A. E. Hogan (Leicester); E. Jehin (STAR); J. S. Jenkins (Departamento de Astronomía, Universidad de Chile, Santiago, Chile; Centro de Astrofísica y Tecnologías Afines (CATA), Santiago, Chile); A. Jordán (Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile; Instituto Millennium de Astrofísica, Chile); L. Kiss (Observatorio Konkoly, Centro de Investigación de Astronomía y Ciencias Espaciales, Budapest, Hungría); M. H. Kristiansen (Observatorio Brorfelde, Observator Gyldenkernes, Dinamarca, DTU Space, Instituto Nacional del Espacio, Universidad Técnica de Dinamarca, Dinamarca); K. Lam (Instituto de Investigación Planetaria, DLR); B. Lavie (UNIGE); A. Lecavelier des Etangs (Instituto de  Astrofísica de París, UMR7095 CNRS, Universidad Pierre & Marie Curie, París, Francia); M. Lendil (UNIGE); J. Lillo-Box (Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), Campus ESAC, Madrid, España); G. Lo Curto (ESO Vitacura); D. Magrin (INAF, Observatorio Astronómico de Padua, Italia [INAF Padua]); C. J. A. P. Martins (IA, CAUP); P. F. L. Maxted (Grupo de Astrofísica, Universidad de Keele, Reino Unido); J. McCormac (Warwick); A. Mehner (ESO Vitacura); G. Micela (INAF - Observatorio Astronómico de Palermo, Italia); P. Molaro (INAF Trieste, IFPU Trieste); M. Moyano (Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile); C. A. Murray (Laboratorio Cavendish); V. Nascimbeni (INAF, Observatorio Astronómico de Padua, Italia); N. J. Nunes (Instituto de Astrofísica y Ciencias del Espacio, Facultad de Ciencias de la Universidad de Lisboa, Portugal); G. Olofsson (Departamento de Astronomía, Universidad de Estocolmo, Suecia); H. P. Osborn (CSH, Departamento de Física e Instituto Kavli de Astrofísica e Investigación Espacial, Instituto Tecnológico de Massachusetts, EE.UU.); M. Oshagh (IAC, ULL); R. Ottensamer (Departamento de Astrofísica, Universidad de Viena, Austria); I. Pagano (INAF, Observatorio Astrofísico de Catania, Italia); E. Pallé (IAC, ULL); P. P. Pedersen (Laboratorio Cavendish); F. A. Pepe (UNIGE); C.M. Persson (Chalmers); G. Peter (Instituto de sistemas de Sensores Ópticos, Centro Aeroespacial Alemán (DLR), Berlín, Alemania); G. Piotto (INAF Padua, Departamento de Física y Astronomía "Galileo Galilei", Universidad de Padua, Italia); G. Polenta (Centro de Datos de Ciencias Espaciales, Roma, Italia); D. Pollacco (Warwick); E. Poretti (Fundación G. Galilei – INAF (Telescopio Nacional Galileo); La Palma, España, INAF - Observatorio Astronómico de Brera, Merate, Italia); F. J. Pozuelos (Lieja, STAR); F. Pozuelos (Lieja, STAR); D. Queloz (UNIGE, Laboratorio Cavendish); R. Ragazzoni (INAF Padua); N. Rando (ESTEC); F. Ratti (ESTEC); H. Rauer (Instituto de Investigación Planetaria, DLR); L. Raynard (Leicester); R. Rebolo (IAC, ULL); C. Reimers (Departamento de Astrofísica, Universidad de Viena, Austria); I. Ribas (Instituto de Ciencias del Espacio (ICE, CSIC), España; Instituto de Estudios Espaciales de Cataluña (IEEC), Barcelona, España); N. C. Santos (IA, Departamento de Física y Astronomía, Universidad de Oporto); G. Scandariato (INAF, Observatorio Astrofísico de Catania, Italia); J. Schneider (Observatorio de París, Francia); D. Sebastian (Escuela de Física Astronomía, Universidad de Birmingham, Reino Unido [Birmingham]); M. Sestovic (CSH); A. E. Simon (Berna); A. M. S. Smith (Instituto de Investigación  Planetaria, DLR); S. G. Sousa (IA); A. Sozzetti (INAF Torino); M. Steller (IWF); A. Suárez Mascareño (IAC, ULL); G. M. Szabó (ELTE, Universidad Eötvös Loránd, Observatorio de Astrofísica Gothard, Hungría, MTA-ELTE Grupo de Investigación de Exoplanetas, Hungría); D Ségransan (UNIGE); N. Thomas (Berna); S. Thompson (Laboratorio Cavendish); R. H. Tilbrook (Leicester); A. Triaud (Birmingham); S. Udry (UNIGE); V. Van Grootel (STAR); H. Venus (Instituto de Sistemas de Sensores Ópticos, DLR); F. Verrecchia (Centro de Datos de Ciencias Espaciales, ASI, Roma, Italia, INAF, Observatorio Astronómico de Roma, Italia); J. I. Vines (Camino El Observatorio 1515, Santiago, Chile); N. A. Walton (Instituto de Astronomía, Universidad de Cambridge, Reino Unido); R. G. West (Warwick, CEH); P. K. Wheatley (Warwick, CEH); D. Wolter (Instituto de Investigación Planetaria, DLR); M. R. Zapatero Osorio (Centro de Astrobiología (CSIC-INTA), Madrid, España).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza, junto con Chile, país anfitrión, y Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el CTA Sur (Cherenkov Telescope Array South), el observatorio de rayos gamma más grande y sensible del mundo. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Adrien Leleu
Université de Genève
Geneva, Switzerland
Correo electrónico: Adrien.Leleu@unige.ch

Yann Alibert
University of Bern
Bern, Switzerland
Tlf.: +41 31 631 55 47
Correo electrónico: yann.alibert@space.unibe.ch

Nathan Hara
Université de Genève
Geneva, Switzerland
Tlf.: +41 22 379 24 14
Correo electrónico: nathan.hara@unige.ch

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

Connect with ESO on social media

viernes, 22 de enero de 2021

El agujero negro más antiguo conocido hasta la fecha

El agujero negro más antiguo conocido hasta la fecha

Descubren un cuásar que ya existía cuando el universo tenía tan solo unos cientos de millones de años, algo difícil de explicar con las teorías actuales sobre la formación de agujeros negros.


Karin Schlott, 15 de enero 2021

Un equipo liderado por Feige Wang, de la Universidad de Arizona, ha localizado el cuásar más distante y antiguo que se conoce hasta la fecha. El objeto, denominado J0313-1806, es tan remoto, que su luz ha tardado 13.030 millones de años en llegar a la Tierra. Como informan los astrónomos en The Astrophysical Journal Letters, el cuásar, alimentado por un agujero negro supermasivo, se observa en el estado en que se encontraba 670 millones de años después de la gran explosión. Así pues, J0313-1806 nos permite echar un vistazo a los primeros tiempos del universo, que en ese momento solo había alcanzado alrededor del 5 por ciento de su edad actual de 13.700 millones de años. Clic AQUÍ para seguir leyendo y ver la imagen.

Hallan dos monstruosas galaxias, 62 veces más grandes que nuestra Vía Láctea

Hallan dos monstruosas galaxias, 62 veces más grandes que nuestra Vía Láctea

Se trata de dos radiogalaxias cuyo diámetro ronda los 6,5 millones de años luz y que podrían ser los mayores objetos individuales vistos hasta ahora en el Universo


José Manuel Nieves MADRID Actualizado:21/01/2021 01:54h

Dos gigantescas radiogalaxias acaban de ser descubiertas gracias a las 64 antenas del poderoso telescopio MeerKAT, en Sudáfrica, en el transcurso de una investigación en la que han participado una treintena de astrónomos de institutos y observatorios de todo el mundo. Una radiogalaxia es un tipo de galaxia activa que se caracteriza por su gran luminosidad en las frecuencias de radio, que emiten en forma de grandes y potentes chorros o «jets». Los chorros se forman como consecuencia de la interacción de partículas cargadas y poderosos campos magnéticos alrededor de los agujeros negros supermasivos que se encuentran en los corazones de esas galaxias. Las dos nuevas radiogalaxias, sin embargo, destacan sobre todas las demás. En efecto, de los millones de radiogalaxias encontradas hasta ahora solo 800 son gigantes, y las dos recién descubiertas podrían ser los mayores objetos individuales observados hasta ahora en todo el Universo. Clic AQUÍ para seguir leyendo y ver las imágenes.

viernes, 15 de enero de 2021

ALMA capta el proceso de muerte de una distante galaxia en colisión mientras pierde la capacidad de formar estrellas

ALMA capta el proceso de muerte de una distante galaxia en colisión mientras pierde la capacidad de formar estrellas

11 de Enero de 2021, Madrid

Las galaxias comienzan a "morir" cuando dejan de formar estrellas, pero hasta ahora los astrónomos nunca habían vislumbrado claramente el comienzo de este proceso en una galaxia lejana. Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), del que el Observatorio Europeo Austral (ESO) es socio, los astrónomos han visto una galaxia expulsando casi la mitad de su gas, el elemento fundamental para la formación de estrellas. Esta eyección tiene lugar a un ritmo sorprendente, equivalente al gas que se necesitaría para formar 10.000 Soles al año: la galaxia está perdiendo rápidamente su combustible para hacer nuevas estrellas. El equipo cree que este espectacular evento lo desencadenó una colisión con otra galaxia, lo que podría llevar a los astrónomos a replantearse cómo las galaxias dejan de dar vida a nuevas estrellas.

“Es la primera vez que observamos una típica galaxia masiva formadora de estrellas en el universo distante a punto de 'morir' debido a una expulsión masiva de gas frío”, afirma Annagrazia Puglisi, investigadora principal del nuevo estudio, de la Universidad de Durham (Reino Unido) y el Centro de Investigación Nuclear Saclay (CEA-Saclay, Francia). La galaxia, ID2299, está tan lejos que su luz tarda unos 9 mil millones de años en llegar a nosotros; la vemos cuando el Universo tenía sólo 4.500 millones de años.

La eyección de gas equivale al necesario para alcanzar una tasa de formación de 10.000 soles al año, y está eliminando un asombroso 46% del gas frío total de ID2299. Debido a que la galaxia también está formando estrellas de forma muy rápida (cientos de veces más rápido que nuestra Vía Láctea), el gas restante se consumirá rápidamente, haciendo que ID2299 cese su producción en tan sólo unas pocas decenas de millones de años.

El evento responsable de la espectacular pérdida de gas, según el equipo, es una colisión entre dos galaxias que, finalmente, se fusionaron para formar ID2299. La escurridiza pista que llevó a los científicos hacia este escenario fue la asociación del gas expulsado con una "cola de marea". Las colas de marea son corrientes alargadas de estrellas y gas que se extienden en el espacio interestelar y que son el resultado de la fusión de dos galaxias, difíciles de ver en galaxias distantes porque, por lo general, son demasiado débiles. Sin embargo, el equipo logró observar este fenómeno relativamente brillante justo cuando se lanzaba al espacio y fueron capaces de identificarlo como una cola de marea.

La mayoría de los astrónomos cree que los vientos causados por la formación de estrellas y la actividad de los agujeros negros en los centros de galaxias masivas son responsables de lanzar material de formación de estrellas al espacio, terminando así con la capacidad de las galaxias para crear nuevas estrellas. Sin embargo, el nuevo estudio publicado hoy en Nature Astronomy sugiere que las fusiones galácticas también pueden ser responsables de expulsar al espacio el combustible necesario para la formación de estrellas.

“Nuestro estudio sugiere que las eyecciones de gas pueden producirse por fusiones y que los vientos y las colas de marea pueden parecer muy similares”, dice el coautor del estudio, Emanuele Daddi, de CEA-Saclay. Por eso es posible que algunos de los equipos que previamente identificaron vientos en galaxias distantes podrían haber estado observando, en realidad, colas de marea expulsando gas de estas galaxias. “Esto podría llevarnos a revisar nuestra comprensión de cómo 'mueren' las galaxias", añade Daddi.

Puglisi subraya la importancia del hallazgo del equipo añadiendo: "¡Estoy encantada de haber descubierto una galaxia tan excepcional! Estaba ansiosa por aprender más sobre este extraño objeto porque estaba convencida de que había una lección importante que aprender sobre cómo evolucionan las galaxias distantes”.

Este sorprendente descubrimiento se hizo por casualidad, mientras el equipo inspeccionaba un sondeo de galaxias, hecho con ALMA, diseñado para estudiar las propiedades del gas frío en más de 100 galaxias lejanas. ID2299 había sido observado por ALMA durante sólo unos minutos, pero el potente observatorio, ubicado en el norte de Chile, permitió al equipo recopilar suficientes datos como para detectar la galaxia y su cola de eyección.

“ALMA ha arrojado nueva luz sobre los mecanismos que pueden detener la formación de estrellas en galaxias distantes. Ser testigos de un evento de disrupción tan masiva añade una pieza importante al complejo rompecabezas de la evolución de las galaxias”,indica Chiara Circosta, investigadora del University College de Londres (Reino Unido), quien también contribuyó a la investigación.

En el futuro, el equipo podría usar ALMA para hacer observaciones más profundas y de mayor resolución de esta galaxia, permitiéndoles comprender mejor la dinámica del gas expulsado. Las observaciones con el futuro Telescopio Extremadamente Grande de ESO podrían permitir al equipo explorar las conexiones entre las estrellas y el gas en ID2299, arrojando nueva luz sobre cómo evolucionan las galaxias.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico “A titanic interstellar medium ejection from a massive starburst galaxy at z=1.4”, que aparece en la revista Nature Astronomy (doi: 10.1038/s41550-020-01268-x).

El equipo está formado por A. Puglisi (Centro de Astronomía Extragaláctica, Universidad de Durham, Reino Unido, y CEA, IRFU, DAp, AIM, Universidad Paris-Saclay, Universidad Paris Diderot, París Ciudad de la Sorbona, CNRS, Francia [CEA]); E. Daddi (CEA); M. Brusa (Departamento de Física y Astronomía, Universidad de Bolonia, Italia, e INAF-Observatorio Astronómico de Bolonia, Italia); F. Bournaud (CEA); J. Fensch (Univ. Lyon, ENS de Lyon, Univ. Lyon 1, CNRS, Centro de Investigación en Astrofísica de Lyon, Francia); D. Liu (Instituto Max Planck de Astronomía, Alemania); I. Delvecchio (CEA); A. Calabrò (INAF-Observatorio Astronómico de Roma, Italia); C. Circosta (Departamento de Física & Astronomía, University College de Londres, Reino Unido); F. Valentino (Centro Cosmic Dawn del Instituto Niels Bohr, Universidad de Copenhague y DTU-Space, Universidad Tecnológica de Dinamarca, Dinamarca); M. Perna (Centro de Astrobiología (CAB, CSIC–INTA), Departamento de Astrofísica, España, e INAF-Observatorio Astrofísico de Arcetri, Italia); S. Jin (Instituto de Astrofísica de Canarias y Universidad de La Laguna, Dpto. Astrofísica, España); A. Enia (Departamento de Física y Astronomía, Universidad de Padua, Italia [Padova]); C. Mancini (Padova) y G. Rodighiero (Padova e INAF-Observatorio Astronómico de Padua, Italia).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza, junto con Chile, país anfitrión, y Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el CTA Sur (Cherenkov Telescope Array South), el observatorio de rayos gamma más grande y sensible del mundo. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

El conjunto ALMA, (Atacama Large Millimeter/submillimeter Array) es una instalación astronómica internacional fruto de la colaboración entre ESO, la Fundación Nacional para la Ciencia de EE.UU. (NSF, National Science Foundation) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS, National Institutes of Natural Sciences) en cooperación con la República de Chile. ALMA está financiado por ESO en nombre de sus países miembros; por la NSF en cooperación con el Consejo Nacional de Investigación de Canadá (NRC, National Research Council) y el Ministerio de Ciencia y Tecnología (MOST, Ministry of Science and Technology), y por el NINS en cooperación con la Academia Sínica (AS) de Taiwán y el Instituto de Astronomía y Ciencias Espaciales de Corea (KASI, Korea Astronomy and Space Science Institute). La construcción y operaciones de ALMA están lideradas por ESO en nombre de sus países miembros; por el Observatorio Nacional de Radioastronomía (NRAO, National Radio Astronomy Observatory), gestionado por Associated Universities, Inc. (AUI), en representación de América del Norte; y por el Observatorio Astronómico Nacional de Japón (NAOJ, National Astronomical Observatory of Japan) en representación de Asia Oriental. El Observatorio Conjunto ALMA (Joint ALMA Observatory, JAO) proporciona al proyecto la unificación tanto del liderazgo como de la gestión de la construcción, puesta a punto y operaciones de ALMA.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Annagrazia Puglisi
Centre for Extragalactic Astronomy, Durham University
Durham, United Kingdom
Correo electrónico: annagrazia.puglisi@durham.ac.uk

Emanuele Daddi
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Saclay, France
Correo electrónico: edaddi@cea.fr

Chiara Circosta
Department of Physics & Astronomy, University College London
London, UK
Correo electrónico: c.circosta@ucl.ac.uk

Bárbara Ferreira
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: pio@eso.org

Connect with ESO on social media

Afirman que Encélado dispone de «todo lo necesario» para la vida

Afirman que Encélado dispone de «todo lo necesario» para la vida

Un nuevo estudio profundiza en la química de la luna de Saturno y encuentra varias fuentes de energía y alimento capaces de dar sustento a diversas comunidades de organismos


José Manuel Nieves MADRID Actualizado:12/01/2021 09:50h

Hace ya mucho tiempo que los astrónomos tienen la vista puesta en Encélado, una de las lunas más enigmáticas de Saturno. Años de estudio y de sobrevuelos de varias misiones espaciales (desde la Voyager, en los años 70, a la más reciente Cassini) han revelado un mundo helado, geológicamente activo y totalmente cubierto por una gruesa capa de hielo. Pero no solo eso. Encélado, que con sus cerca de 500 km de diámetro es la sexta mayor luna de Saturno, esconde bajo esa capa helada un océano de agua líquida. Un océano global y que se mantiene relativamente caliente debido a la más que probable presencia de fuentes hidrotermales, similares a las que existen en los fondos oceánicos de la Tierra. Para colmo, en 2017 la NASA anunció que el análisis del vapor de agua que los potentes géiseres de la superficie del satélite expulsan al espacio había revelado la presencia de hidrógeno molecular (H2), una fuente potencial de alimento para numerosos tipos de microorganismos. Por todo ello, Encelado se considera como uno de los lugares más prometedores del Sistema Solar a la hora de albergar vida. Clic AQUÍ para seguir leyendo y ver el vídeo.

¿Hemos escuchado por primera vez el «zumbido de fondo» del Universo?

¿Hemos escuchado por primera vez el «zumbido de fondo» del Universo?

Un equipo de investigadores cree haber captado el llamado «fondo de ondas gravitacionales»


José Manuel Nieves MADRID Actualizado:13/01/2021 01:07h

Por lo que sabemos, el Universo está repleto de ondas gravitacionales. [...] Con el paso de los eones, muchas de esas ondas se han debilitado y resultan difíciles de localizar, pero los científicos creen que todas juntas forman una especie de "zumbido" general que impregna el Universo entero. Es lo que se conoce como "fondo de ondas gravitacionales" y eso es, precisamente, lo que un equipo de investigadores cree haber captado por primera vez. [...] La esperanzadora señal procede de las observaciones de una clase de cadáveres estelares llamadas púlsares. Se trata de estrellas de neutrones, los densos núcleos que quedan de estrellas que han explotado como supernovas, que giran rápidamente sobre sí mismas y que, al hacerlo, emiten "pulsos" de ondas de radio de un modo parecido a como un faro giratorio emite destellos luminosos. Clic AQUÍ para seguir leyendo y ver la imagen.

viernes, 8 de enero de 2021

La enana marrón más cercana a la Tierra se parece mucho a Júpiter

La enana marrón más cercana a la Tierra se parece mucho a Júpiter


MADRID, 8 Ene. 2021 (EUROPA PRESS)

La enana marrón más cercana a la Tierra registra bandas como Júpiter, que indican los procesos que agitan la atmósfera de esta estrella fallida desde dentro, según un nuevo estudio. Las enanas marrones son misteriosos objetos celestes que no son del todo estrellas ni planetas. Son aproximadamente del tamaño de Júpiter, pero típicamente docenas de veces más masivas. Aún así, son menos masivas que las estrellas más pequeñas, por lo que sus núcleos no tienen suficiente presión para fusionar átomos como lo hacen las estrellas. Son calientes cuando se forman y se enfrían gradualmente, brillan débilmente y se atenúan lentamente a lo largo de sus vidas, lo que los hace difíciles de encontrar. Ningún telescopio puede ver claramente las atmósferas de estos objetos. Clic AQUÍ para seguir leyendo y ver la imagen.

sábado, 2 de enero de 2021

La Tierra alcanza hoy su máxima velocidad: 110.700 kilómetros por hora

La Tierra alcanza hoy su máxima velocidad: 110.700 kilómetros por hora

Nuestro planeta se sitúa en el perihelio, la distancia más cercana al Sol de su órbita


ABC Ciencia MADRID Actualizado:02/01/2021 01:29h

Como cada año, en enero la Tierra se sitúa en el punto más cercano en su órbita respecto al Sol, el perihelio. Y según el Observatorio Astronómico Nacional, dependiente del Instituto Geográfico Nacional, ocurrirá exactamente este 2 de enero, cuando nuestro planeta se coloque a tan «solo» 147.093.051 kilómetros de nuestra estrella. En ese momento, aunque sea imperceptible para los humanos, viajaremos a la endiablada velocidad de 110.700 kilómetros por hora (o, lo que es lo mismo, 30,75 kilómetros por segundo). Esto de debe a que su órbita elíptica: nuestro planeta tiene un recorrido ovalado en el que el Sol no está exactamente en el centro. Este sábado la Tierra alcanza el perihelio, que es el punto más cercano a la estrella. La gravedad que ejerce el Sol sobre la Tierra, que es mayor al estar más cerca, provoca la mayor velocidad orbital, con un aumento de 3.420 kilómetros por hora respecto a la velocidad media de nuestro planeta. Clic AQUÍ para seguir leyendo y ver la imagen.