viernes, 21 de junio de 2019

Detectada una colisión de galaxias a 13.000 millones de años luz

Detectada una colisión de galaxias a 13.000 millones de años luz

Publicado 20/06/2019 13:50:47 CET MADRID, 20 Jun. (EUROPA PRESS)

Observaciones con el telescopio ALMA, en Chile, han deparado la detección de señales de oxígeno, carbono y polvo en una galaxia del Universo primitivo, 13.000 millones de años atrás. Esta es la galaxia más antigua donde se ha detectado esta combinación de señales. Al comparar las diferentes señales, los investigadores llegaron a la conclusión de que en realidad se trata de dos galaxias en colisión, las más antiguas descubiertas a la fecha. Takuya Hashimoto, de la Universidad Waseda, en Japón, y su equipo usaron ALMA (Atacama Large Millimeter/submillimeter Array) para observar B14-65666, un objeto situado a 13.000 millones de años luz de la Tierra, en la constelación Sextans, el Sextante. Como la velocidad de la luz es finita, las señales de B14-65666 captadas hoy tuvieron que viajar durante 13.000 millones de años para llegar hasta nosotros. En otras palabras, estas ondas nos proporcionan una imagen de la galaxia tal como era hace 13.000 millones de años, es decir, solo 1.000 millones de años después del Big BangClic AQUÍ para seguir leyendo y ver la imagen.

Un láser disparado desde el Teide para desintegrar basura espacial

Un láser disparado desde el Teide para desintegrar basura espacial

La Agencia Espacial Europea investiga desde las islas Canarias un nuevo sistema para vaciar de chatarra la órbita terrestre



Un rayo láser disparado desde las alturas del Teide puede ser la solución al problema de la basura espacial. Desde el comienzo de la exploración espacial hace más de 60 años se ha acumulado en la órbita terrestre una masa de chatarra hecha de fragmentos de cohetes y satélites viejos. Actualmente hay casi un millón de objetos de más de un centímetro que viajan por el espacio próximo siete veces más rápido que una bala. Estos enjambres de metralla son capaces de arruinar costosos satélites o provocar un desastre en el único lugar habitado fuera de la Tierra: la Estación Espacial Internacional, que orbita a unos 400 kilómetros de altura. Clic AQUÍ para seguir leyendo y ver las imágenes.

Un telescopio en Almería descubre un sistema solar cercano que puede tener agua líquida

Un telescopio en Almería descubre un sistema solar cercano que puede tener agua líquida

Hallados a 12,5 años luz dos planetas del tamaño de la Tierra orbitando la estrella Teegarden



Astrónomos de varios países han hallado un nuevo sistema solar con dos planetas como la Tierra a 12,5 años luz, la vuelta de la esquina en términos astronómicos. El nuevo sistema planetario orbita en torno a Teegarden, una estrella enana roja mucho más pequeña y tenue que el Sol. Ambos planetas se encuentran tan cerca de su astro que su temperatura es relativamente templada, tanto que podría haber agua líquida en su superficie, una condición fundamental para albergar vida. Clic AQUÍ para seguir leyendo, ver las imágenes y el vídeo.

sábado, 15 de junio de 2019

Breakthrough Watch y el Observatorio Europeo Austral celebran la primera luz de un instrumento buscador de planetas mejorado para buscar planetas tipo tierra en el sistema estelar más cercano

Breakthrough Watch y el Observatorio Europeo Austral celebran la primera luz de un instrumento buscador de planetas mejorado para buscar planetas tipo tierra en el sistema estelar más cercano

Este nuevo instrumento, fabricado para buscar planetas e instalado en el Very Large Telescope (Chile), observará, durante 100 horas, las estrellas cercanas Alfa Centauri A y B con el objetivo de ser el primero en observar, de forma directa, un exoplaneta

10 de Junio de 2019
Breakthrough Watch, el programa astronómico global que busca planetas como la Tierra alrededor de estrellas cercanas, y el Observatorio Europeo Austral (ESO), la organización astronómica intergubernamental más importante de Europa, anunciaron hoy la "primera luz" en un instrumento recién construido que buscará planetas y que está instalado en el VLT (Very Large Telescope) de ESO, en el desierto de Atacama, en Chile.
El instrumento, llamado NEAR (Near Earths in the AlphaCen Region, tierras cercanas en la región AlfaCen), está diseñado para la búsqueda de exoplanetas en nuestro sistema estelar vecino, Alfa Centauri, dentro de las "zonas habitables" de sus dos estrellas similares al Sol, donde el agua podría existir potencialmente en forma líquida. Se ha desarrollado en los últimos tres años y fue construido en colaboración con la Universidad de Uppsala (Suecia), la Universidad de Lieja (Bélgica), el Instituto Tecnológico de California (EE.UU.) y el Kampf Telescope Optics de Múnich (Alemania).
Desde el 23 de mayo, astrónomos de ESO han utilizado el VLT (Very Large Telescope) de ESO para llevar a cabo una observación de diez días con el fin de establecer la presencia o ausencia de uno o más planetas en el sistema de la estrella. Las observaciones concluirán mañana, 11 de junio. Los planetas del sistema (de dos veces el tamaño de la Tierra o más grandes), serían detectables con esta instrumentación mejorada. El rango entre el infrarrojo cercano y el infrarrojo térmico es importante ya que corresponde al calor emitido por un candidato a planeta y permite así a los astrónomos determinar si la temperatura del planeta permite la existencia de agua líquida.
Alfa Centauri es el sistema estelar más cercano a nuestro Sistema Solar, a 4,37 años luz de distancia (más de 40 billones de kilómetros). Consiste en dos estrellas similares al Sol, Alfa Centauri A y B, más Próxima Centauri, una estrella enana roja. Actualmente sabemos poco de los sistemas planetarios de Alfa Centauri. En 2016, utilizando instrumentos de ESO, un equipo descubrió un planeta similar a la Tierra orbitando alrededor de Próxima Centauri. Pero Alfa Centauri A y B siguen siendo grandes desconocidas; no está clara la estabilidad de este tipo de sistemas de estrellas binarias para planetas como la Tierra, y la forma más prometedora de establecer si existen alrededor de estas estrellas cercanas es intentar observarlos.
Sin embargo, obtener imágenes de estos planetas es un desafío técnico importante, ya que la luz de las estrellas que se refleja en ellos generalmente es miles de millones de veces más débil que la luz que nos llega directamente de sus estrellas anfitrionas; resolver un pequeño planeta cerca de su estrella a una distancia de varios años luz se ha comparado con poder localizar una polilla que vuela alrededor de una farola situada a decenas de kilómetros de distancia. Para resolver este problema, en 2016 Breakthrough Watch y ESO pusieron en marcha una colaboración para construir un instrumento especial, un coronógrafo en el infrarrojo térmico, diseñado para bloquear la mayoría de la luz proveniente de las estrellas y optimizado para captar, más que la pequeña cantidad de luz reflejada de la estrella, la luz infrarroja emitida por la superficie caliente de un planeta. Igual que los objetos cercanos al Sol (normalmente ocultos por su resplandor) pueden verse durante un eclipse total, el coronógrafo crea una especie de eclipse artificial de la estrella seleccionada, bloqueando su luz y permitiendo la detección de objetos cercanos mucho más débiles. Esto marca un importante avance en las capacidades de observación.
El coronógrafo se ha instalado en uno de los cuatro telescopios de 8 metros del VLT, actualizando y modificando un instrumento existente llamado VISIR, con el fin de optimizar su sensibilidad a longitudes de onda infrarrojas asociadas con exoplanetas potencialmente habitables. Por lo tanto, será capaz de buscar firmas de calor similares a las de la Tierra, que absorbe la energía del Sol y emite en el rango de longitud de onda del infrarrojo térmico. NEAR modifica al instrumento VISIR combinando varios logros de vanguardia en ingeniería astronómicas, y lo hace en tres aspectos: en primer lugar, adapta el instrumento a la coronografía, lo que le permite reducir drásticamente la luz de la estrella objeto de estudio y revelar las firmas de potenciales planetas terrestres; en segundo lugar, utiliza una técnica llamada óptica adaptativa para deformar estratégicamente el espejo secundario del telescopio, compensando el desenfoque producido por la atmósfera terrestre; en tercer lugar, emplea novedosas estrategias de basculación (chopping en inglés) que también reducen el ruido y potencialmente permiten que el instrumento cambie rápidamente entre las estrellas estudiadas (cada 100 milisegundos) maximizando el tiempo de telescopio disponible.
Pete Worden, Director Ejecutivo de Breakthrough Initiatives, afirmó: “Estamos encantados de colaborar con ESO en el diseño, construcción, instalación y ahora utilización de este nuevo e innovador instrumento. Si hay planetas como la Tierra alrededor de Alfa Centauri A y B, será una gran noticia para todos en nuestro planeta”.
ESO está encantado de poder aportar su experiencia, su infraestructura ya existente y el tiempo de observación del VLT (Very Large Telescope) al proyecto NEAR”, comentó el director del proyecto por parte de ESO, Robin Arsenault.
Es una gran oportunidad, ya que (además de sus propios objetivos científicos) el experimento NEAR también es pionero para abrir el camino a futuros instrumentos buscadores de planetas destinados al próximo ELT (Extremely Large Telescope)”, añadió Markus Kasper, Responsable científico de ESO en el proyecto NEAR.
NEAR es el primer y (por el momento) único proyecto que podría obtener imágenes directas de un exoplaneta habitable. Marca un hito importante. Cruzamos los dedos y esperamos que haya un gran planeta habitable orbitando Alfa Cen A o B”, comenta Olivier Guyon, responsable científico de Breakthrough Watch.
Para Yuri Milner, fundador de Breakthrough Initiatives, “Los seres humanos son exploradores por naturaleza. Es hora de descubrir qué hay más allá, y este telescopio nos ayudará a hacerlo”.

Notas

Los datos del experimento NEAR están disponibles en el archivo de ESO bajo el programa ID 2102.C-5011. Poco después de que concluya la campaña, también habrá disponible un paquete previamente procesado y resumido de todos los datos. Además, la herramienta de reducción de datos de imágenes de alto contraste basada en Phyton, PynPoint, ha sido adaptada para procesar datos de NEAR y se facilitará a los miembros de la comunidad astronómica que deseen utilizar los datos y no dispongan de sus propias herramientas de reducción de datos. https://pynpoint.readthedocs.io/en/latest/near.html
Breakthrough Watch es un programa astronómico global cuyo objetivo es identificar y caracterizar planetas alrededor de estrellas cercanas. El programa está dirigido por un equipo internacional de expertos en detección de exoplanetas e imagen. https://breakthroughinitiatives.org/initiative/4
Breakthrough Initiatives es un conjunto de programas científicos y tecnológicos, financiados por Yuri Milner, que estudian la vida en el universo. Junto con Breakthrough Watch, incluyen el programa Breakthrough Listen, la búsqueda astronómica más grande de signos de vida inteligente más allá de la Tierra, y Breakthrough Starshot, el primer intento significativo de diseñar y desarrollar una sonda espacial capaz de llegar a otra estrella.
Yuri Milner fundó el Grupo Mail.ru en 1999 y, bajo su liderazgo, se convirtió en una de las compañías de internet líderes de Europa. En 2010 sacó la empresa a bolsa y fundó DST Global para centrarse en inversiones globales de internet. DST Global se convirtió en uno de los principales inversionistas de tecnología del mundo y su cartera ha incluido algunas de las empresas de internet más importantes del mundo, como Facebook, Twitter, WhatsApp, Snapchat, Airbnb, Spotify, Alibaba y otros. Yuri vive en Silicon Valley con su familia.
Yuri se graduó en 1985 con un título superior en física teórica y, posteriormente, llevó a cabo investigaciones en teoría cuántica de campos. Yuri y su esposa Julia se asociaron con Sergey Brin, Priscilla Chan y Mark Zuckerberg, Pony Ma y Anne Wojcicki, para financiar los Premios Breakthrough, los premios científicos más grandes del mundo, para honrar logros importantes, sobre todo recientes, en Física Fundamental, Ciencias de la Vida y Matemáticas. En julio de 2015, junto con Stephen Hawking, Yuri lanzó la iniciativa Breakthrough Listen de 100 millones de dólares para reforzar la búsqueda de inteligencia extraterrestre en el universo, y en abril de 2016 lanzaron Breakthrough Starshot, un programa de investigación e ingeniería de 100 millones de dólares con el objetivo de desarrollar una tecnología que permita hacer viajes interestelares.
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile, y con Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Conjunto de Telescopios Cherenkov Sur, el observatorio de rayos gamma más sensible y más grande del mundo. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
El VLT (Very Large Telescope) de ESO ha incorporado recientemente, a su conjunto de instrumentos avanzados, un instrumento modificado hace poco: VISIR (VLT Imager and Spectrometer for mid-Infrared, instrumento para imagen y espectroscopía en el infrarrojo medio para el VLT). El 21 de mayo de 2019, hizo sus primeras observaciones desde su modificación para ayudar en la búsqueda de planetas potencialmente habitables en el sistema Alfa Centauri.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Janet Wootten
Rubenstein Communications, Inc.
New York, USA
Tlf.: +1 212 843 8024
Correo electrónico: jwootten@rubenstein.com

Mariya Lyubenova
Head of ESO Media Relations Team
Garching bei München, Germany
Tlf.: +49 89 3200 6188
Correo electrónico: pio@eso.org

viernes, 7 de junio de 2019

Primera evidencia de un 'puente' de radio entre dos cúmulos galácticos

Primera evidencia de un 'puente' de radio entre dos cúmulos galácticos


Actualizado 07/06/2019 11:57:44 CET MADRID, 7 Jun. (EUROPA PRESS)

Una gran cresta de plasma que emite radio en un filamento de la red cósmica ha sido descubierto conectando dos cúmulos de galaxias en fusión. Según publican en 'Science' los autores, los resultados suponen un desafío para las teorías actuales sobre la aceleración de partículas en estas vastas regiones del espacio intergaláctico. Los cúmulos de galaxias, las mayores estructuras del universo, pueden contener desde cientos hasta miles de galaxias, así como inmensas cantidades de materia. Los filamentos cruzan el vacío situado entre estos cúmulos y forman una vasta red cósmica. Clic AQUÍ para seguir leyendo y ver la imagen.

ESO participa en la protección de la Tierra frente a asteroides peligrosos

ESO participa en la protección de la Tierra frente a asteroides peligrosos

El VLT observa un asteroide doble que sobrevuela la Tierra a 70.000 km/h

3 de Junio de 2019
Las capacidades únicas del instrumento SPHERE, instalado en el VLT (Very Large Telescope) de ESO, le han permitido obtener las imágenes más nítidas de un asteroide doble que sobrevoló la Tierra el 25 de mayo. Aunque este asteroide doble no era una amenaza, los científicos aprovecharon la oportunidad para ensayar la respuesta a un posible NEO (Near Earth Object, objeto cercano a la Tierra) peligroso, demostrando que la tecnología de primera línea de ESO podría ser crítica en la defensa planetaria.
El Centro Internacional de Alerta de Asteroides (IAWN, de International Asteroid Warning Network) coordinó desde varias organizaciones una campaña de observación del asteroide 1999 KW4 a su paso por la Tierra, que alcanzó una distancia mínima de 5,2 millones de km [1] el 25 de mayo de 2019. 1999 KW4 tiene aproximadamente 1,3 km de ancho y no representa ningún riesgo para la Tierra. Dado que su órbita es conocida, los científicos pudieron predecir este sobrevuelo y preparar la campaña de observación.
ESO se unió a la campaña con su buque insignia, el VLT (Very Large Telescope). El VLT está equipado con SPHERE, uno de los pocos instrumentos del mundo capaz de obtener imágenes lo suficiente precisas como para distinguir los dos componentes del asteroide, que están separados por unos 2,6 km.
SPHERE fue diseñado para observar exoplanetas; su sistema de óptica adaptativa de vanguardia (AO) corrige la turbulencia de la atmósfera, devolviendo imágenes tan nítidas como si el telescopio estuviera en el espacio. También está equipado con coronógrafos para atenuar el brillo de estrellas brillantes, desvelando la presencia de los débiles exoplanetas que las orbitan.
Tomándose un descanso de su trabajo habitual, que implica pasarse la noche cazando exoplanetas, los datos de SPHERE ayudaron a los astrónomos a caracterizan el asteroide doble. En particular, ahora es posible medir si el satélite más pequeño tiene la misma composición que el objeto más grande.
Estos datos, junto con todos aquellos que se obtienen en otros telescopios a través de la campaña de la IAWN, serán esenciales para la evaluación de estrategias de desviación efectiva en caso de que se descubriera que un asteroide tiene curso de colisión con la Tierra”, explica Olivier Hainaut, astrónomo de ESO. “En el peor de los casos, este conocimiento también es esencial para predecir cómo un asteroide podría interactuar con la atmósfera y la superficie de la Tierra, permitiéndonos mitigar los daños en caso de colisión”.
El asteroide doble pasó cerca de la Tierra a más de 70.000 km/h, lo que hizo que observarlo con el VLT fuera todo un desafío”, afirmó Diego Parraguez, que manejaba el telescopio. Tuvo que usar toda su experiencia para fijar el rápido asteroide y captarlo con SPHERE.
Bin Yang, astrónomo del VLT, declaró: “Cuando vimos el satélite en las imágenes corregidas por AO, estábamos muy emocionados. En ese momento, sentimos que todo el sufrimiento, todos los esfuerzos, habían merecido la pena”. Mathias Jones, otro astrónomo del VLT implicado en estas observaciones, profundizó en las dificultades: “Durante las observaciones, las condiciones atmosféricas fueron un poco inestables. Además, el asteroide era relativamente débil y se movía muy rápido en el cielo, por lo que estas observaciones eran un reto particular que hizo que nuestro sistema de AO dejara de funcionar en varias ocasiones. ¡Fue un placer ver que nuestro duro trabajo salió adelante a pesar de las dificultades!”.
Aunque 1999 KW4 no es una amenaza de impacto, se parece bastante a otro sistema de asteroides binario llamado Didymos que podría constituir una amenaza a la Tierra en algún momento de un futuro lejano.
Didymos y su compañero, llamado “Didymoon”, son el objetivo de un futuro experimento pionero de defensa planetaria. La nave espacial DART de la NASA impactará sobre Didymoon en un intento de cambiar su órbita alrededor de su gemelo de mayor tamaño, con el fin de poner a prueba la viabilidad de desviar asteroides. Después del impacto, la misión Hera de la ESA monitorizará los asteroides Didymos en 2026 para reunir información clave, incluidos la masa de Didymoon, las propiedades de su superficie y la forma del cráter dejado por DART.
El éxito de estas misiones depende de la colaboración entre organizaciones, y el seguimiento de objetos cercanos a la tierra es un importante punto en la colaboración entre ESO y ESA. Este esfuerzo cooperativo ha sido constante desde el éxito del primer seguimiento de un NEO potencialmente peligroso a principios de 2014.
Estamos encantados de desempeñar un papel en la protección de la Tierra frente a los asteroides”, afirmó Xavier Barcons, Director General de ESO. “Además de utilizar las sofisticadas capacidades del VLT, estamos trabajando con la ESA para crear prototipos destinados a una gran red que lleve la detección, seguimiento y caracterización de asteroides al siguiente nivel”.
Este encuentro reciente con 1999 KW4 ha tenido lugar justo un mes antes del día del asteroide, un día oficial declarado por las Naciones Unidas con el fin de educar y sensibilizar sobre los asteroides y que se celebra el 30 de junio. Se llevarán a cabo eventos en los cinco continentes, y ESO estará entre las principales organizaciones astronómicas participantes. Ese día, el Planetario y Centro de Visitantes ESO Supernova acogerá una serie de actividades sobre el tema de los asteroides a las que el público está invitado a participar.

Notas

[1] Esta distancia es unas 14 veces la distancia a la Luna, lo suficientemente cerca como para poder estudiarlo, ¡pero no lo suficiente como para ser mortal! Muchos asteroides pequeños pasan cerca de la Tierra a mucha menos distancia que 1999 KW4, incluso a veces más cerca que la Luna. El encuentro más reciente de la Tierra con un asteroide tuvo lugar el 15 de febrero de 2013, cuando un asteroide previamente desconocido, de 18 metros de diámetro, explotó al entrar en la atmósfera de la Tierra sobre la ciudad rusa de Chelyabinsk. Los daños producidos por la onda de choque posterior causaron heridas a unas 1.500 personas.

Información adicional

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile, y con Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Conjunto de Telescopios Cherenkov Sur, el observatorio de rayos gamma más sensible y más grande del mundo. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Correo electrónico: pio@eso.org