viernes, 30 de noviembre de 2018

La nave que verá las entrañas de Marte llega a su destino

La nave que verá las entrañas de Marte llega a su destino


La misión InSight de la NASA aterriza en el planeta rojo



InSight ha aterrizado con éxito en Marte para la primera misión espacial que estudiará el interior del planeta y averiguará si está completamente muerto o aún alberga algo de actividad en sus entrañas. La nave de la NASA ha entrado en la fina atmósfera marciana a 20.000 kilómetros por hora para sufrir los llamados “siete minutos de terror”, el tiempo durante el que ha tenido que frenar lo suficiente como para posarse en la superficie de Marte a la velocidad de una persona andando rápido (8 km/h). [...] El aterrizaje, tal y como estaba previsto, se ha registrado a 20:54 de este lunes, hora peninsular española, y la primera señal de radio desde la superficie del planeta rojo ha tardado en llegar a la Tierra ocho minutos más. Clic AQUÍ para seguir leyendo, ver la imagen y el vídeo.
Más información: https://www.abc.es/ciencia/abci-sonda-insight-dice-hola-y-despierta-marte-201811271717_noticia.html

sábado, 24 de noviembre de 2018

El inédito descubrimiento del hermano gemelo del Sol a 184 años luz

El inédito descubrimiento del hermano gemelo del Sol a 184 años luz

Redacción BBC News Mundo 23 noviembre 2018

Es tan parecida al Sol que los científicos aseguran que no solamente es su hermana, sino su gemela. Un equipo internacional de astrónomos detectó una estrella que parece un calco de la nuestra. Tiene su misma temperatura y luminosidad, una composición química muy parecida y casi la misma edad, unos 4.500 millones de años. La estrella gemela, llamada HD 186302, se encuentra a 184 años luz y permitirá a los científicos investigar el lugar del nacimiento del Sol, que sigue siendo un misterio.
Clic AQUÍ para seguir leyendo y ver las imágenes.

sábado, 17 de noviembre de 2018

Descubren una gigantesca galaxia fantasma oculta tras la Vía Láctea

Descubren una gigantesca galaxia fantasma oculta tras la Vía Láctea

Oscura y de un tamaño inesperado, ha sido detectada por la sonda europea Gaia


ABC Ciencia Madrid Actualizado:13/11/2018 22:34h

Gracias a la sonda espacial europea Gaia, un equipo internacional de astrónomos ha descubierto una gigantesca galaxia fantasma oculta detrás del disco de la Vía Láctea. El objeto masivo, conocido como Antlia 2 (o Ant 2) es un satélite de nuestra propia galaxia con una densidad tan baja que hasta ahora había pasado desapercibido. La investigación aparece publicada en el archivo online para estudios científicos Arxiv.org. Clic AQUÍ para seguir leyendo y ver la imagen.

viernes, 16 de noviembre de 2018

Una supertierra orbita a la estrella de Barnard

Una supertierra orbita a la estrella de Barnard

La campaña Red Dots desvela poderosas evidencias de la presencia de un exoplaneta alrededor de la estrella única más cercana al Sol

14 de Noviembre de 2018
La estrella única más cercana al Sol alberga un exoplaneta al menos 3,2 veces tan masivo como la Tierra, una llamada supertierra. Una de las campañas de observación más grande realizada hasta la fecha, que ha utilizado datos de un conjunto de telescopios de todo el mundo (incluyendo el instrumento cazador de planetas HARPS de ESO), ha revelado la existencia de este mundo helado y débilmente iluminado. El planeta recién descubierto es el segundo exoplaneta conocido más cercano a la Tierra. La estrella de Barnard es la estrella más rápida del cielo nocturno.
Se ha detectado un planeta orbitando a la estrella de Barnard, un objeto a tan solo 6 años luz de distancia. Este avance, dado a conocer en un artículo publicado hoy en la revista Nature, es el resultado de los proyectos Red Dots y CARMENES, cuya búsqueda de planetas rocosos locales ya ha descubierto un nuevo mundo orbitando a nuestra vecina más cercana, Proxima Centauri.
El planeta, designado como estrella de Barnard b, es el segundo exoplaneta conocido más cercano a la tierra [1]. Los datos obtenidos indican que el planeta podría ser una supertierra, tiene una masa de al menos 3,2 veces la de la Tierra, y orbita a su estrella anfitriona en aproximadamente 233 días. La estrella de Barnard, la estrella que alberga al planeta, es una enana roja, una estrella fría, de baja masa, que ilumina de forma muy débil a este mundo recién descubierto. La luz de la estrella de Barnard proporciona a su planeta sólo el 2% de la energía que recibe la Tierra del Sol.
A pesar de estar relativamente cerca de su estrella, a una distancia de sólo 0,4 veces la que separa al Sol de la Tierra, el exoplaneta se encuentra cerca de la línea de nieve, la región donde compuestos volátiles como el agua pueden condensarse en hielo sólido. Este mundo helado y de sombra podría tener una temperatura de –170 °C, haciéndolo inhóspito para la vida tal y como la conocemos.
Llamada así por el astrónomo E. E. Barnard, la estrella de Barnard es la estrella única más cercana al Sol. Mientras que la estrella en sí misma es antigua (tiene probablemente dos veces la edad de nuestro Sol), y relativamente inactiva, también es la estrella con el movimiento aparente más rápido del cielo [2]. Las supertierras son el tipo más común de planeta de los que se forman alrededor de las estrellas de baja masa como la estrella de Barnard, otorgando credibilidad a este candidato planetario recién descubierto. Por otra parte, las teorías actuales de formación planetaria predicen que la línea de nieve es el lugar ideal para la formación de estos planetas.
Las búsquedas anteriores de un planeta alrededor de estrella de Barnard han tenido resultados decepcionantes, pero este reciente avance ha sido posible combinando las mediciones de varios instrumentos de alta precisión montados en telescopios de todo el mundo [3].
"Tras un cuidadosos análisis, estamos convencidos al 99% de que el planeta está allí", afirma el científico que lidera el equipo, Ignasi Ribas (Instituto de estudios espaciales de Cataluña e Instituto de Ciencias del Espacio, CSIC, en España). "Sin embargo, vamos a seguir observando esta veloz estrella para excluir posibles, pero improbables, variaciones naturales de la luminosidad estelar que puedan confundirse con un planeta".
Entre los instrumentos utilizados están el famoso cazador de planeta HARPS y el espectrógrafo UVES, ambos de ESO. "HARPS desempeñó un papel vital en este proyecto. Se combinaron datos de archivo de otros equipos con medidas nuevas y superpuestas de la estrella de Barnard de diferentes instalaciones", comentó Guillem Anglada Escudé (Universidad Queen Mary de Londres), científico que colidera al equipo que ha obtenido estos resultados [4]"La combinación de instrumentos fue clave para poder corroborar nuestros resultados".
Los astrónomos utilizaron el efecto Doppler para detectar al candidato a exoplaneta. Mientras el planeta orbita a la estrella, su atracción gravitatoria hace que la estrella sufra un bamboleo. Cuando la estrella se aleja de la Tierra, su espectro se desplaza al rojo (redshift); es decir, se desplaza hacia longitudes de onda más largas. Del mismo modo, la luz de la estrella se desplaza hacia longitudes de onda más cortas, más azules, cuando la estrella se mueve hacia la Tierra.
Los astrónomos aprovechan este efecto para medir con asombrosa exactitud los cambios en la velocidad de una estrella debidos a un exoplaneta que orbita. HARPS puede detectar cambios en la velocidad de la estrella tan pequeño como 3,5 km/h (un ritmo parecido al que utilizamos al caminar). Esta técnica de búsqueda de exoplanetas se conoce como el método de velocidad radial y nunca antes se había utilizado para detectar un exoplaneta tipo supertierra similar en una órbita tan grande alrededor de su estrella.
"Hemos utilizado observaciones de siete instrumentos diferentes, que abarcan 20 años de mediciones, haciendo de este uno de los conjuntos de datos más grande y más extenso usado para estudios precisos de velocidad radial", explica Ribas. "La combinación de todos los datos llevó a un total de 771 medidas, ¡una gran cantidad de información!".
"Todos hemos trabajado muy duro en este avance", concluye Anglada-Escudé. "Este descubrimiento es el resultado de una gran colaboración organizada en el marco del proyecto Red Dots, que incluyó contribuciones de equipos de todo el mundo. Ya se han puesto en marcha observaciones de seguimiento en distintos observatorios de todo el mundo".

Notas

[1] La estrellas más cercanas al Sol forman el sistema estelar triple Alfa Centauri. En 2016, un equipo de astrónomos, utilizando telescopios de ESO y otras instalaciones, encontró claras evidencias de un planeta que orbitaba a la estrella de este sistema más cercana a la Tierra, Próxima Centauri. Ese planeta se encuentra a poco más de 4 años luz de la Tierra y fue descubierto por un equipo dirigido por Guillem Anglada Escudé.
>[2] La velocidad total de la estrella de Barnard en relación con el Sol es de cerca de 500.000 kilómetros por hora. A pesar de este ritmo tan veloz, no es la estrella conocida más rápida. Lo que hace notable el movimiento de la estrella es la rapidez con la que parece moverse a través del cielo nocturno vista desde la Tierra, algo conocido como movimiento aparente. La estrella de Barnard viaja una distancia equivalente al diámetro de la Luna en el cielo cada 180 años (aunque esto pueda no parecer mucho, es el movimiento aparente más rápido de cualquier estrella).
[3] Las instalaciones utilizadas en este estudio han sido: HARPS, en el >Telescopio de 3,6 metros de ESOUVES, en el VLT de ESO; HARPS-N, en el Telescopio Nazionale GalileoHIRES, en el Telescopio Keck de 10 metrosPFS, en el Telescopio de Magallanes de Carnegie de 6,5 metrosAPF, en el Telescopio de 2,4 metros del Observatorio Lick; y CARMENES, en el Observatorio de Calar Alto. Además, se llevaron a cabo observaciones con el Telescopio de 90 cm del Observatorio de Sierra Nevada, el Telescopio Robótico de 40 cm del Observatorio SPACEOBS, y el Telescopio Joan Oró de 80 cm del Observatorio Astronómico de Montsec (OAdM).
[4] Se profundizará en la historia detrás de este descubrimiento en el ESOBlog de esta semana.

Información adicional

Este trabajo de investigación se ha publicado en el artículo científico titulado A super-Earth planet candidate orbiting at the snow-line of Barnard’s star  en la revista Nature del 15 de noviembre de 2018.
El equipo está formado por I. Ribas (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); M. Tuomi (Centro de Investigación en Astrofísica, Universidad de Hertfordshire, Reino Unido); A. Reiners (Instituto de Astrofísica de Gotinga, Alemania); R. P. Butler (Departamento de Magnetismo Terrestre, Institución Carnegie para la Ciencia, EE.UU.); J. C. Morales (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); M. Perger (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); S. Dreizler (Instituto de Astrofísica de Gotinga, Alemania); C. Rodríguez-López (Instituto de Astrofísica de Andalucía, España), J. I. González Hernández (Instituto de Astrofísica de Canarias, España, & Universidad de La Laguna, España), A. Rosich (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); F. Feng (Centro de Investigación en Astrofísica, Universidad de Hertfordshire, Reino Unido); T. Trifonov (Instituto Max-Planck de Astronomía, Alemania); S. S. Vogt (Observatorio Lick, Universidad de California, EE.UU.); J. A. Caballero (Centro de Astrobiología, CSIC-INTA, España); A. Hatzes (Observatorio Estatal de Turingia, Alemania); E. Herrero (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); S. V. Jeffers (Instituto de Astrofísica de Gotinga, Alemania); M. Lafarga (Instituto de Ciencias del Espacio, España, & Instituto de Estudios Espaciales de Cataluña, España); F. Murgas (Instituto de Astrofísica de Canarias, España, & Universidad de La Laguna, España); R. P. Nelson (Escuela de Física y Astronomía, Universidad Queen Mary de Londres, Reino Unido); E. Rodríguez (Instituto de Astrofísica de Andalucía, España); J. B. P. Strachan (Escuela de Física y Astronomía, Universidad Queen Mary de Londres, Reino Unido); L. Tal-Or (Instituto de Astrofísica de Gotinga, Alemania, & Escuela de Geociencias, Universidad de Tel-Aviv, Israel); J. Teske Butler (Departamento de Magnetismo Terrestre, Institución Carnegie para la Ciencia, EE.UU., & Hubble); B. Toledo-Padrón (Instituto de Astrofísica de Canarias, España & Universidad de La Laguna, España); M. Zechmeister (Instituto de Astrofísica de Gotinga, Alemania); A. Quirrenbach (Observatorio Estatal, Universidad de Heidelberg, Alemania); P. J. Amado (Instituto de Astrofísica de Andalucía, España); M. Azzaro (Centro Astronómico Hispano-Alemán, España); V. J. S. Béjar (Instituto de Astrofísica de Canarias, España, & Universidad de La Laguna, España), J. R. Barnes (Escuela de Ciencias Físicas, Universidad Abierta, Reino Unido); Z. M. Berdiñas (Departamento de Astronomía, Universidad de Chile), J. Burt (Instituto Kavli, Instituto Tecnológico de Massachusetts, EE.UU.); G. Coleman (Instituto de Física, Universidad de Berna, Suiza); M. Cortés-Contreras (Centro de Astrobiología, CSIC-INTA, España), J. Crane (Los Observatorios, Institución Carnegie para la Ciencia, EE.UU.); S. G. Engle (Departamento de Astrofísica & Ciencias Planetarias, Universidad de Villanova, EE.UU.); E. F. Guinan (Departamento de Astrofísica & Ciencias Planetarias, Universidad de Villanova, EE.UU.); C. A. Haswell (Escuela de Ciencias Físicas, Universidad Abierta, Reino Unido); Th. Henning (Instituto Max-Planck de Astronomía, Alemania); B. Holden (Observatorio Lick, Universidad de California, EE.UU.); J. Jenkins (Departamento de Astronomía, Universidad de Chile), H. R. A. Jones (Centro de Investigación en Astrofísica, Universidad de Hertfordshire, Reino Unido); A. Kaminski (Observatorio Estatal, Universidad de Heidelberg, Alemania); M. Kiraga (Observatorio de la Universidad de Varsovia, Polonia); M. Kürster (Instituto Max-Planck de Astronomía, Alemania); M. H. Lee (Departamento de Ciencias de la Tierra y Departamento de Física, Universidad de Hong Kong); M. J. López-González (Instituto de Astrofísica de Andalucía, España); D. Montes (Dep. de Física de la Tierra Astronomía y Astrofísica & Unidad de Física de Partículas y del Cosmos de la Universidad Complutense de Madrid, España); J. Morin (Laboratorio Universo y Partículas de Montpellier, Universidad de Montpellier, Francia); A. Ofir (Departamento de Ciencias de la Tierra y Ciencias Planetarias, Instituto Weizmann de Ciencia, Israel); E. Pallé (Instituto de Astrofísica de Canarias, España, & Universidad de La Laguna, España); R. Rebolo (Instituto de Astrofísica de Canarias, España, & Consejo Superior de Investigaciones Científicas & Universidad de La Laguna, España); S. Reffert (Observatorio Estatal, Universidad de Heidelberg, Alemania); A. Schweitzer (Observatorio de Hamburgo, Universidad de Hamburgo, Alemania); W. Seifert (Observatorio Estatal, Universidad de Heidelberg, Alemania); S. A. Shectman (Los Observatorios, Institución Carnegie para la Ciencia, EE.UU.); D. Staab (Escuela de Ciencias Físicas, Universidad Abierta, Reino Unido); R. A. Street (Red Global de Telescopios del Observatorio Las Cumbres, EE.UU.); A. Suárez Mascareño (Observatorio Astronómico de la Universidad de Ginebra, Suiza, & Instituto de Astrofísica de Canarias, España); Y. Tsapras (Cenro de Astronomía de la Universidad de Heidelberg, Alemania); S. X. Wang Butler (Departamento de Magnetismo Terrestre, Institución Carnegie para la Ciencia, EE.UU.); y G. Anglada-Escudé (Escuela de Física y Astronomía, Universidad Queen Mary de Londres, Reino Unido, & Instituto de Astrofísica de Andalucía, España).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con Chile, país anfitrión, y Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 91 813 11 96
Correo electrónico: mm@cab.inta-csic.es
Ignasi Ribas (Lead Scientist)
Institut d’Estudis Espacials de Catalunya and the Institute of Space Sciences, CSIC
Barcelona, Spain
Tlf.: +34 93 737 97 88 (ext 933027)
Correo electrónico: iribas@ice.cat
Guillem Anglada-Escudé
Queen Mary University of London
London, United Kingdom
Tlf.: +44 (0)20 7882 3002
Correo electrónico: g.anglada@qmul.ac.uk
Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 1537 3591
Correo electrónico: pio@eso.org
Esta es una traducción de la nota de prensa de ESO eso1837.

viernes, 9 de noviembre de 2018

Descubren un agujero negro capaz de hacer girar el espacio-tiempo

Descubren un agujero negro capaz de hacer girar el espacio-tiempo

En el sistema binario 4U 1630-47 hay un agujero negro que gira casi a la máxima velocidad permitida por la Relatividad y que retuerce todo lo que hay a su alrededor


José Manuel Nieves @josemnieves Actualizado:09/11/2018 11:02h

Un equipo internacional de investigadores, liderados por la Indian Space Research Organization (Isro) y la NASA, acaban de descubrir en el sistema binario 4U 1630-47 un agujero negro que gira casi al máximo de la velocidad permitida por la teoría de la Relatividad General de Einstein. De hecho, su rotación es tan rápida que el objeto estaría obligando a que el propio espacio circundante rote junto a él. Clic AQUÍ para seguir leyendo y ver el vídeo.

viernes, 2 de noviembre de 2018

Las observaciones más detalladas de material orbitando cerca de un agujero negro

Las observaciones más detalladas de material orbitando cerca de un agujero negro

El instrumento GRAVITY de ESO confirma el estado del agujero negro que está en el centro de la Vía Láctea

31 de Octubre de 2018
El instrumento GRAVITY de ESO que se caracteriza por ser extremadamente sensible ha sumado más pruebas a la antigua suposición de que un agujero negro supermasivo se esconde en el centro de la Vía Láctea. Nuevas observaciones muestran aglomeraciones de gas girando a aproximadamente un 30% de la velocidad de la luz en una órbita circular justo a las afueras de su horizonte de sucesos. El primer material fue observado orbitando cerca del punto de no retorno, y las observaciones más detalladas ya muestran material orbitando muy cerca de un agujero negro.
El instrumento GRAVITY de ESO instalado en el interferómetro del Very Large Telescope (VLT) lo han usado científicos de un consorcio de instituciones europeas, incluyendo a ESO [1], para observar destellos de radiación infrarroja provenientes del disco de acreción alrededor de Sagitario A*, el objeto masivo en el corazón de la Vía Láctea. Los destellos observados entregan la confirmación esperada por tanto tiempo de que el objeto en el centro de nuestra galaxia es, como se ha asumido por largo tiempo, un agujero negro supermasivo. Los destellos se originan del material que orbita muy cerca del horizonte de sucesos del agujero negro, haciendo de éstas las observaciones más detalladas que existen de material orbitando tan cerca de un agujero negro.  

  
Mientras parte del material en el disco de acreción — el cinturón de gas que orbita Sagitario A* a velocidades relativistas [2] — puede orbitar el agujero negro de forma segura, cualquier cosa que se acerque demasiado está destinada a ser atraída más allá del horizonte de sucesos. El punto más cercano a un agujero negro que puede orbitar ese material sin ser inevitablemente atraído hacia dentro por la inmensa masa se conoce como la órbita estable más cercana, y es desde aquí que se originan los destellos observados. 

"Es alucinante ver efectivamente material orbitando un agujero negro masivo a un 30% de la velocidad de la luz”, dijo maravillado Oliver Pfuhl, científico en el Instituto Max Planck de Física Extraterrestre (MPE). “La gran sensibilidad de GRAVITY nos ha permitido observar los procesos de acreción en tiempo real con un nivel de detalle sin precedentes”.  


Estas mediciones sólo fueron posibles gracias a la colaboración internacional y a instrumentos dotados de la tecnología más avanzada [3]. El instrumento GRAVITY que hizo posible este trabajo combina la luz de cuatro telescopios del VLT de ESO para crear un súper telescopio virtual de 130 metros de diámetro, y ya ha sido usado para explorar la naturaleza de Sagitario A*.

A principios de este año, GRAVITY y SINFONI, otro instrumento del VLT, le permitieron al mismo equipo medir con exactitud el sobrevuelo cercano de la estrella S2 a medida que pasaba por el intenso campo gravitatorio que hay cerca de Sagitario A*, y por primera vez esto reveló los efectos previstos por la relatividad general de Einstein en un ambiente así de extremo. Durante el sobrevuelo cercano de S2, se observó también una fuerte emisión infrarroja. 

"Monitoreamos de cerca S2, y por supuesto siempre supervisamos Sagitario A*”, explicó Pfuhl. “Durante nuestras observaciones, tuvimos la suerte de apreciar tres destellos brillantes alrededor del agujero negro, ¡lo que fue una afortunada coincidencia!”.   
Esta emisión, proveniente de electrones altamente energéticos muy cercanos al agujero negro, fue observada como tres prominentes destellos brillantes, y coincide exactamente con las predicciones teóricas sobre zonas calientes orbitando cerca de un agujero negro con una masa de cuatro millones de veces la del Sol [4]. Se cree que los destellos se originan a partir de interacciones magnéticas en el gas muy caliente que orbita muy cerca de Sagitario A*.  
Reinhard Genzel, del Instituto Max Planck de Física Extraterrestre (MPE) en Garching, Alemania, quien dirigió el estudio, explicó: “Este siempre fue uno de nuestros proyectos soñados, pero nunca pensamos que pudiese hacerse realidad tan pronto”. Refiriéndose a la antigua suposición de que Sagitario A* es un agujero negro supermasivo, Genzel concluyó que “el resultado es una rotunda confirmación del paradigma sobre el agujero negro masivo”.

Notas

[1] Esta investigación fue llevada a cabo por científicos del Instituto Max Planck de Física Extraterrestre (MPE), el Observatorio de Paris, la Universidad Grenoble Alpes, el CNRS, el Instituto Max Planck de Astronomía, la Universidad de Colonia, la institución portuguesa CENTRA – Centro de Astrofísica y Gravitación y ESO.

[2] Son velocidades relativistas aquellas que son tan grandes que los efectos de la Teoría de la Relatividad de Einstein se vuelven importantes. En el caso del disco de acreción que rodea a Sagitario A*, el gas se mueve a aproximadamente un 30% de la velocidad de la luz.

[3] GRAVITY fue desarrollado por una colaboración formada por el Instituto Max Planck de Física Extraterrestre (Alemania), LESIA del Observatorio de París– PSL/CNRS/Universidad de la Sorbona/Universidad París Diderot e IPAG de la Universidad Grenoble Alpes/CNRS (Francia), el Instituto Max Planck de Astronomía (Alemania), la Universidad de Colonia (Alemania), la institución portuguesa CENTRA – Centro de Astrofísica y Gravitación (Portugal) y ESO.

[4] La masa solar es una unidad utilizada en astronomía. Es igual a la masa de nuestra estrella más cercana, el Sol, y tiene un valor de 1.989 × 1030 kg. Esto significa que Sgr A* tiene una masa 1,3 billones de veces superior a la de la Tierra.

Información adicional

Este trabajo de investigación se presentó en el artículo científico titulado "Detection of Orbital Motions Near the Last Stable Circular Orbit of the Massive Black Hole SgrA*", por la Colaboración GRAVITY, y aparece en la revista Astronomy & Astrophysics el 31 de octubre de 2018.
El equipo de la Colaboración GRAVITY está formado por: R. Abuter (ESO, Garching, Germany), A. Amorim (Universidade de Lisboa, Lisbon, Portugal), M. Bauböck (Max Planck Institute for Extraterrestrial Physics, Garching, Germany [MPE]), J.P. Berger (Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France [IPAG]; ESO, Garching, Germany), H. Bonnet (ESO, Garching, Germany), W. Brandner (Max Planck Institute for Astronomy, Heidelberg, Germany [MPIA]), Y. Clénet (LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Meudon, France [LESIA])), V. Coudé du Foresto (LESIA), P. T. de Zeeuw (Sterrewacht Leiden, Leiden University, Leiden, The Netherlands; MPE), C. Deen (MPE), J. Dexter (MPE), G. Duvert (IPAG), A. Eckart (University of Cologne, Cologne, Germany; Max Planck Institute for Radio Astronomy, Bonn, Germany), F. Eisenhauer (MPE), N.M. Förster Schreiber (MPE), P. Garcia (Universidade do Porto, Porto, Portugal; Universidade de Lisboa Lisboa, Portugal), F. Gao (MPE), E. Gendron (LESIA), R. Genzel (MPE; University of California, Berkeley, California, USA), S. Gillessen (MPE), P. Guajardo (ESO, Santiago, Chile), M. Habibi (MPE), X. Haubois (ESO, Santiago, Chile), Th. Henning (MPIA), S. Hippler (MPIA), M. Horrobin (University of Cologne, Cologne, Germany), A. Huber (MPIA), A. Jimenez Rosales (MPE), L. Jocou (IPAG), P. Kervella (LESIA; MPIA), S. Lacour (LESIA), V. Lapeyrère (LESIA), B. Lazareff (IPAG), J.-B. Le Bouquin (IPAG), P. Léna (LESIA), M. Lippa (MPE), T. Ott (MPE), J. Panduro (MPIA), T. Paumard (LESIA), K. Perraut (IPAG), G. Perrin (LESIA), O. Pfuhl (MPE), P.M. Plewa (MPE), S. Rabien (MPE), G. Rodríguez-Coira (LESIA), G. Rousset (LESIA), A. Sternberg (School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel, Center for Computational Astrophysics, Flatiron Institute, New York, USA), O. Straub (LESIA), C. Straubmeier (University of Cologne, Cologne, Germany), E. Sturm (MPE), L.J. Tacconi (MPE), F. Vincent (LESIA), S. von Fellenberg (MPE), I. Waisberg (MPE), F. Widmann (MPE), E. Wieprecht (MPE), E. Wiezorrek (MPE), J. Woillez (ESO, Garching, Germany), S. Yazici (MPE; University of Cologne, Cologne, Germany).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile y con Australia como aliado estratégico.  ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el ELT (Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”

Enlaces

Contactos

Oliver Pfuhl
Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30 000 3295
Correo electrónico: pfuhl@mpe.mpg.de

Jason Dexter
Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30 000 3324
Correo electrónico: jdexter@mpe.mpg.de

Thibaut Paumard
CNRS Researcher
Observatoire de Paris, France
Tlf.: +33 145 077 5451
Correo electrónico: thibaut.paumard@obspm.fr

Xavier Haubois
ESO Astronomer
Santiago, Chile
Tlf.: +56 2 2463 3055
Correo electrónico: xhaubois@eso.org

IR Group Secretariat
Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30000 3880
Correo electrónico: ir-office@mpe.mpg.de

Hannelore Hämmerle
Public Information Officer, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30 000 3980
Correo electrónico: hannelore.haemmerle@mpe.mpg.de

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Correo electrónico: pio@eso.org