viernes, 31 de diciembre de 2021

BALANCE ANUAL de mis Blogs de Cuadernos de Ciencias

BALANCE ANUAL

de mis Blogs de Cuadernos de Ciencias

¡ 10 AÑOS A TU LADO !

Te doy las gracias por haber contribuido a las más de 289.000 visitas que he recibido en mis Cuadernos de Ciencias, desde su creación en el año 2012. 

BALANCE DE MIS BLOGS DE CUADERNOS DE CIENCIAS

Cuaderno

Entradas 2021

TOTAL Entradas

Visitas 2021

TOTAL Visitas

ASTRONOMÍA

92

983

6.188

51.586

BIOLOGÍA

129

1.316

8.505

62.241

FÍSICA

199

1.155

9.993

57.507

GEOLOGÍA

61

397

3.989

24.028

QUÍMICA

64

341

4.640

25.147

MEDICINA

171

1.691

11.996

69.299

TOTAL

716

5.883

45.311

289.808

 Esto me anima a seguir ofreciéndote semanalmente las Noticias de Ciencia, que me han parecido más relevantes.

Además quiero desearte una ¡FELIZ NOCHEVIEJA 2021 y MUCHA SALUD Y FELICIDAD PARA EL AÑO NUEVO 2022!

 Un abrazo de Alfonso. 

Alicante, 31-12-2021

 

https://cuadernodeastronomiadealfonso.blogspot.com/

https://cuadernodebiologiadealfonso.blogspot.com/

 

 

https://cuadernodefisicadealfonso.blogspot.com/

https://cuadernodegeologiadealfonso.blogspot.com/

 

 

https://cuadernodequimicadealfonso.blogspot.com/

https://cuadernodemedicinadealfonso.blogspot.com/


viernes, 24 de diciembre de 2021

Telescopios de ESO ayudan a descubrir el grupo más grande de planetas errantes detectados hasta la fecha

Telescopios de ESO ayudan a descubrir el grupo más grande de planetas errantes detectados hasta la fecha

22 de Diciembre de 2021

Los planetas errantes son esquivos objetos cósmicos con masas comparables a las de los planetas de nuestro Sistema Solar, pero que no orbitan una estrella, sino que deambulan libremente a su aire. Hasta ahora no se conocían muchos, pero utilizando datos de varios telescopios del Observatorio Europeo Austral (ESO) y de otras instalaciones, un equipo especializado en astronomía acaba de descubrir al menos 70 nuevos planetas errantes en nuestra galaxia. Es un paso importante hacia la comprensión de los orígenes y características de estos misteriosos nómadas galácticos, ya que se trata del grupo de planetas errantes más grande jamás descubierto.

"No sabíamos cuántos podríamos encontrar y estamos emocionados por haber detectado tantos", afirma Núria Miret-Roig, astrónoma del Laboratorio de Astrofísica de Burdeos (Francia) y de la Universidad de Viena (Austria) y la primera autora del nuevo estudio publicado hoy en la revista Nature Astronomy.

Normalmente sería imposible obtener imágenes de planetas errantes, ya que se mueven lejos de cualquier estrella que pueda iluminarlos. Sin embargo, Miret-Roig y su equipo aprovecharon el hecho de que, en los pocos millones de años posteriores a su formación, estos planetas todavía están lo suficientemente calientes como para brillar, lo que los hace directamente detectables por cámaras sensibles instaladas en grandes telescopios. Encontraron al menos 70 nuevos planetas errantes con masas comparables a las de Júpiter en una región de formación estelar cerca de nuestro Sol situada entre las constelaciones de Escorpio y Ofiuco [1].

Para detectar tantos planetas errantes, el equipo utilizó datos de varios telescopios basados en tierra y en el espacio que abarcan unos 20 años de observaciones. "Medimos los pequeños movimientos, los colores y las luminosidades de decenas de millones de fuentes en una gran área del cielo",explica Miret-Roig."Estas mediciones nos permitieron identificar de forma fiable los objetos más débiles de esta región, los planetas errantes".

El equipo utilizó observaciones de los telescopios de ESO: VLT (Very Large Telescope), VISTA (Visible and Infrared Survey Telescope for Astronomy), VST (VLT Survey Telescope) y del Telescopio MPG/ESO de 2,2 metros, todos ubicados en Chile, junto con observaciones de otras instalaciones."La gran mayoría de nuestros datos provienen de observatorios de ESO, que fueron absolutamente críticos para este estudio. Su amplio campo de visión y su sensibilidad única fueron claves para nuestro éxito", explica Hervé Bouy, astrónomo del Laboratorio de Astrofísica de Burdeos (Francia) y líder de proyecto de esta nueva investigación. "Utilizamos decenas de miles de imágenes de amplio campo obtenidas con las instalaciones de ESO, correspondientes a cientos de horas de observaciones y literalmente decenas de terabytes de datos".

El equipo también utilizó datos del satélite Gaia de la Agencia Espacial Europea, lo que supone un gran éxito en la colaboración entre telescopios terrestres y espaciales para la exploración y comprensión de nuestro Universo.

El estudio sugiere que podría haber muchos más de estos esquivos planetas sin estrellas que aún tenemos que descubrir. "Podría haber varios miles de millones de estos planetas gigantes que flotan libremente vagando a su aire por la Vía Láctea sin una estrella anfitriona", explica Bouy.

Estudiando estos planetas errantes recién descubiertos, la comunidad astronómica puede encontrar pistas sobre cómo se forman estos misteriosos objetos. Dentro de la comunidad científica hay quienes creen que los planetas errantes pueden formarse a partir del colapso de una nube de gas demasiado pequeña como para desencadenar la formación de una estrella, o que podrían haber sido expulsados de su sistema anfitrión. Pero aún no se sabe cuál de estos mecanismos es el más probable.

Para desbloquear el misterio de estos planetas nómadas serán clave los nuevos avances en tecnología. El equipo espera continuar estudiándolos con mayor detalle con el próximo Telescopio Extremadamente Grande (ELT) de ESO, que actualmente está en construcción en el desierto chileno de Atacama y que comenzará sus observaciones a finales de esta década. "Estos objetos son extremadamente débiles y poco se puede hacer para estudiarlos con las instalaciones actuales", añade Bouy. "El ELT será absolutamente crucial para recopilar más información sobre la mayoría de los planetas errantes que hemos encontrado".

Notas

[1] El número exacto de planetas errantes encontrados por el equipo es difícil de precisar porque las observaciones no permiten a los investigadores medir las masas de los objetos sondeados. Los objetos con masas superiores a aproximadamente 13 veces la masa de Júpiter probablemente no son planetas, por lo que no se pueden incluir en el recuento. Sin embargo, dado que el equipo no tenía valores para la masa, tuvieron que confiar en el estudio del brillo de los planetas para proporcionar un límite superior al número de planetas errantes observados. El brillo está, a su vez, relacionado con la edad de los propios planetas, ya que cuanto más viejo es el planeta, más tiempo se ha estado enfriando y reduciendo en brillo. Si la región estudiada es antigua, entonces los objetos más brillantes de la muestra probablemente estén por encima de 13 masas de Júpiter, y por debajo si la región es más joven. Dada la incertidumbre en la edad de la región de estudio, este método da un recuento de planetas errantes de entre 70 y 170.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico "A rich population of free-floating planets in the Upper Scorpius young stellar association", publicado en la revista Nature Astronomy. Ha recibido financiación del Consejo Europeo de Investigación (ERC) en el marco del programa de investigación e innovación Horizonte 2020 de la Unión Europea (acuerdo de subvención n.º 682903, I.P. H. Bouy), y del Estado francés en el marco del programa "Inversiones para el futuro", IdEx Burdeos, referencia ANR-10-IDEX-03-02.

El equipo está formado por Núria Miret-Roig (Laboratorio de Astrofísica de Burdeos, Universidad de Burdeos, CNRS, Francia [LAB]; Universidad de Viena, Departamento de Astrofísica, Austria); Hervé Bouy (LAB); Sean N. Raymond (LAB); Motohide Tamura (Departamento de Astronomía, Escuela de Grado de Ciencias, Universidad de Tokio, Japón; Centro de Astrobiología, Institutos Nacionales de Ciencias Naturales, Tokio, Japón [ABC-NINS]); Emmanuel Bertin (CNRS, UMR 7095, Instituto de Astrofísica de París, Francia [IAP]; Universidad de la Sorbona, IAP, Francia); David Barrado (Centro de Astrobiología [CSIC-INTA], Departamento de Astrofísica, ESAC Campus, España); Javier Olivares (LAB); Phillip Galli (LAB); Jean-Charles Cuillandre (AIM, CEA, CNRS, Universidad Paris-Saclay, Universidad de París, Francia); Luis Manuel Sarro (Departamento de Inteligencia Artificial, UNED, España); Angel Berihuete (Departamento de Estadística e Investigación Operativa, Universidad de Cádiz, España) & Nuria Huélamo (CSIC-INTA).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), así como dos telescopios de rastreo: VISTA, que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera APEX y ALMA, dos instalaciones que observan los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Núria Miret-Roig
Department of Astrophysics, University of Vienna
Vienna, Austria
Tlf.: +43 1427753845
Correo electrónico: nuria.miret.roig@univie.ac.at

Hervé Bouy
Laboratoire d'Astrophysique de Bordeaux, Université de Bordeaux
Pessac, France
Tlf.: +33 5 40 00 32 94
Correo electrónico: herve.bouy@u-bordeaux.fr

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

Connect with ESO on social media

James Webb: El telescopio que verá cómo nació la luz en el universo

James Webb: El telescopio que verá cómo nació la luz en el universo

Todo está preparado para el lanzamiento del mayor observatorio astronómico espacial de la historia, que podrá ver las primeras estrellas del cosmos y buscar rastros de vida en planetas más allá del sistema solar


23 de diciembre de 2021

El ‘James Webb’ es el mayor telescopio que se ha lanzado al espacio. Nos mostrará por primera vez cómo eran las primeras estrellas y galaxias del universo, hace más de 13.000 millones de años. El Telescopio Espacial ‘James Webb’ llegará mucho más lejos que el Hubble: hasta el límite del universo visible. Sus instrumentos ópticos podrán analizar en detalle regiones con galaxias de menos de 5.000 millones de años. La óptica del ‘Webb’ podrá atravesar las nubes de polvo y ver qué hay más allá de las galaxias que vio ‘Hubble’. [...] La máquina que Mather y otros astrofísicos llevan construyendo desde 1995 es el Telescopio Espacial James Webb, que será el primero capaz de ver ese amanecer que surgió hace 13.700 millones de años, cuando el universo era casi un recién nacido, y cuyo lanzamiento está previsto para la próxima Nochebuena, a la una de la tarde, hora peninsular española. Clic AQUÍ para seguir leyendo, ver las imágenes y los vídeos.

Descubren, de un solo golpe, 70 nuevos planetas errantes cerca del Sol

Descubren, de un solo golpe, 70 nuevos planetas errantes cerca del Sol

Los astrónomos creen que podría haber varios miles de millones de estos mundos solitarios solo en nuestra galaxia


José Manuel Nieves Actualizado:22/12/2021 20:19h

Los planetas errantes se distinguen de todos los demás porque vagan solos a través del espacio, lejos de cualquier estrella que pueda iluminarlos. Se trata, por lo general, de cuerpos oscuros y muy difíciles de localizar, pero se ha estimado que sólo en nuestra galaxia podría haber miles de millones de ellos. Ahora, un equipo internacional de investigadores, entre ellos varios españoles, afirma en un artículo recién publicado en ' Nature Astronomy' que ha conseguido encontrar todo un grupo de estos planetas solitarios. Para ello los investigadores se han aprovechado del hecho de que, durante sus primeros millones de años de existencia, estos mundos están aún lo suficientemente calientes para brillar, lo que convierte a los más jóvenes en objetos detectables por las cámaras de los grandes telescopios. De este modo, los astrónomos lograron esta vez identificar por lo menos 70 nuevos planetas errantes con masas comparables a la de Júpiter. Y todos en una misma región de formación de estrellas cercana a nuestro Sol, en las constelaciones de Scorpius Superior y OfiucoClic AQUÍ para seguir leyendo y ver la imagen.

sábado, 18 de diciembre de 2021

Estos son los avances científicos más importantes de 2021 según la revista ‘Science’

Estos son los avances científicos más importantes de 2021 según la revista ‘Science’


*SINC National Geographic, Actualizado a 17 de diciembre de 2021, 14:50

Predicción de la estructura de las proteínas mediante IA

Dos avances para luchar contra la COVID-19

Nuevas medidas de muon que desafían el modelo estándar

Observaciones sísmicas del interior de Marte

Obtención de ADN humano antiguo en sedimentos

Aplicación in vivo de la técnica CRISPR

La ‘cría’ de embriones abre ventanas en el desarrollo temprano

Drogas psicodélicas para tratar el estrés postraumático

Resultado inesperado en fusión nuclear


*SINC, el Servicio de Información y Noticias Científicas, es la agencia de noticias científicas de la Fundación Española para la Ciencia y la Tecnología (FECYT).

Clic AQUÍ para seguir leyendo y ver las imágenes.

viernes, 17 de diciembre de 2021

Una sonda espacial de la NASA ‘toca’ el Sol

Una sonda espacial de la NASA ‘toca’ el Sol

La ‘Parker Solar Probe’ permaneció durante cinco horas en la corona del astro


EFE EL PAÍS Washington / Madrid - 15 DIC 2021 - 11:24 CET

Una sonda espacial de la NASA ha tocado el Sol al volar a través de la atmósfera superior de este astro (la corona) para tomar muestras de partículas y campos magnéticos en ese lugar, informó el martes la agencia aeroespacial estadounidense. Se trata de la primera ocasión, según la agencia, en que una nave se adentra en las fronteras exteriores del Sol, donde la sonda Parker Solar Probe permaneció durante cinco horas. En 2019, la NASA ya contó que por primera vez en la historia esta nave espacial había entrado en la atmósfera del Sol, aunque ahora se ha adentrado en la atmósfera del astro. Clic AQUÍ para seguir leyendo, ver la imagen y el vídeo.

Vea las imágenes más profundas hasta el momento del movimiento de las estrellas alrededor del agujero negro supermasivo de la Vía Láctea

Vea las imágenes más profundas hasta el momento del movimiento de las estrellas alrededor del agujero negro supermasivo de la Vía Láctea

14 de Diciembre de 2021

El Interferómetro del Very Large Telescope del Observatorio Europeo Austral (VLTI de ESO) ha obtenido las imágenes más profundas y nítidas hasta la fecha de la región que hay alrededor del agujero negro supermasivo ubicado en el centro de nuestra galaxia. Las nuevas imágenes nos acercan 20 veces más de lo que era posible antes del VLTI y han ayudado a los astrónomos a encontrar una estrella nunca antes vista cerca del agujero negro. Al rastrear las órbitas de las estrellas del centro de nuestra Vía Láctea, el equipo ha realizado la medición más precisa obtenida hasta el momento de la masa del agujero negro.

"Queremos aprender más sobre el agujero negro del centro de la Vía Láctea, Sagitario A*: ¿cuán masivo es exactamente? ¿Rota? ¿Se comportan las estrellas de su alrededor tal y como predice la teoría general de la relatividad de Einstein? La mejor manera de responder a estas preguntas es seguir a las estrellas en órbitas cercanas al agujero negro supermasivo. Y aquí demostramos que podemos hacerlo con la mayor precisión alcanzada hasta ahora", explica Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE) en Garching (Alemania), quien recibió un Premio Nobel en 2020 por la investigación de Sagitario A*. Los últimos resultados de Genzel y su equipo, que amplían su estudio de tres décadas de estrellas que orbitan el agujero negro supermasivo de la Vía Láctea, se publican hoy en dos artículos en la revista Astronomy & Astrophysics.

En una búsqueda para encontrar aún más estrellas cerca del agujero negro, el equipo, conocido como la colaboración GRAVITY, desarrolló una nueva técnica de análisis que les ha permitido obtener las imágenes más profundas y nítidas de nuestro Centro Galáctico. "El VLTI nos da esta increíble resolución espacial y, con las nuevas imágenes, alcanzamos una profundidad nunca lograda antes. Estamos atónitos por su cantidad de detalles, y por la actividad y el número de estrellas que revelan alrededor del agujero negro", explica Julia Stadler, investigadora del Instituto Max Planck de Astrofísica en Garching, quien dirigió los esfuerzos del equipo para la obtención de imágenes durante su etapa en MPE. Sorprendentemente, encontraron una estrella, llamada S300, que no se había visto anteriormente, lo que demuestra cuán potente es este método cuando se trata de detectar objetos muy débiles cerca de Sagitario A *.

Con sus últimas observaciones, realizadas entre marzo y julio de 2021, el equipo se centró en realizar mediciones precisas de las estrellas a medida que se acercaban al agujero negro. Esto incluye a la estrella S29, que ostenta el récord, ya que hizo su aproximación más cercana al agujero negro a finales de mayo de 2021. Pasó a una distancia de solo 13000 millones de kilómetros, aproximadamente 90 veces la distancia Sol-Tierra, a la impresionante velocidad de 8740 kilómetros por segundo. Nunca se ha observado que ninguna otra estrella pase tan cerca o viaje tan rápido alrededor del agujero negro.

Las mediciones e imágenes del equipo fueron posibles gracias a GRAVITY, un instrumento único que la colaboración desarrolló para el VLTI de ESO, ubicado en Chile. GRAVITY combina la luz de los cuatro telescopios de 8,2 metros del Very Large Telescope (VLT) de ESO utilizando una técnica llamada interferometría. Esta técnica es compleja, "pero al final se obtienen imágenes 20 veces más nítidas que las que obtendríamos utilizando los telescopios del VLT de forma individual, revelando los secretos del Centro Galáctico", afirma Frank Eisenhauer, del MPE e investigador principal de GRAVITY.

Seguir a las estrellas en órbitas cercanas alrededor de Sagitario A* nos permite sondear con precisión el campo gravitacional que hay alrededor del agujero negro masivo más cercano a la Tierra, probar la Relatividad General y determinar las propiedades del agujero negro", explica Genzel. Las nuevas observaciones, combinadas con los datos anteriores del equipo, confirman que las estrellas se comportan tal y como predice la Relatividad General para los objetos que se mueven alrededor de un agujero negro con una masa de 4,30 millones de veces la del Sol. Se trata de la estimación más precisa de la masa del agujero negro central de la Vía Láctea hasta la fecha. El equipo de investigación también logró ajustar la distancia a Sagitario A*, determinando que se encuentra a 27 000 años luz de distancia.

Para obtener las nuevas imágenes, el equipo utilizó una técnica de aprendizaje automático, llamada Teoría de Campos de la Información (Information Field Theory). Hicieron un modelo de cómo pueden ser las fuentes reales, simularon cómo las vería GRAVITY y compararon esta simulación con las observaciones de GRAVITY. Esto les permitió detectar y rastrear estrellas alrededor de Sagitario A* con una profundidad y precisión incomparables. Además de las observaciones con GRAVITY, el equipo también utilizó datos de NACO y SINFONI, dos antiguos instrumentos del VLT, así como mediciones del Observatorio Keck y el Observatorio Gemini de NOIRLab, en los Estados Unidos.

GRAVITY se actualizará a finales de esta década a GRAVITY+, que también se instalará en el VLTI de ESO, aumentando aún más su sensibilidad para detectar estrellas aún más débiles y más cercanas al agujero negro. Finalmente, el equipo tiene como objetivo detectar estrellas tan cercanas que sus órbitas sientan los efectos gravitacionales causados por la rotación del agujero negro. El próximo Telescopio Extremadamente Grande (ELT) de ESO, en construcción en el desierto chileno de Atacama, permitirá al equipo medir la velocidad de estas estrellas con una precisión muy alta. "Combinando las capacidades de GRAVITY + y el ELT, podremos descubrir la velocidad a la que gira el agujero negro", afirma Eisenhauer. "Hasta ahora, nadie ha sido capaz de hacerlo".

Información adicional

Este trabajo de investigación se ha presentado a través de dos artículos científicos de la colaboración GRAVITY que aparecen en la revista Astronomy & Astrophysics.

El equipo autor del artículo “The mass distribution in the Galactic Centre from interferometric astrometry of multiple stellar orbits” (doi:10.1051/0004-6361/202142465) está compuesto por: R. Abuter (Observatorio Europeo Austral, Garching, Alemania [ESO]); A. Amorim (Universidad de Lisboa - Facultad de Ciencias, Portugal; y Centro de Astrofísica y Gravitación, IST, Universidad de Lisboa, Portugal [CENTRA]);  M. Bauböck (Instituto Max Planck de Física Extraterrestre, Garching, Alemania [MPE] y Departamento de Física, Universidad de Illinois, EE.UU.); J. P. Berger (Univ. Grenoble Alpes, CNRS, Grenoble, Francia [IPAG] y ESO); H. Bonnet (ESO); G. Bourdarot (IPAG y MPE); W. Brandner (Instituto Max Planck de Astronomía, Heidelberg, Alemania [MPIA]); V. Cardoso (CENTRA y CERN, Ginebra, Suiza); Y. Clénet (Observatorio de París, Universidad PSL, CNRS, Universidad de la Sorbona, Universidad de París, Meudon, Francia [LESIA]); Y. Dallilar (MPE); R. Davies (MPE); P. T. de Zeeuw (Observatorio de Leiden, Universidad de Leiden [Leiden], Países Bajos; y MPE); J. Dexter (Departamento de Astrofísica & Ciencias Planetarias, JILA, Edif. De Física Duane, Universidad de Colorado [Colorado], Boulder, EE.UU.); A. Drescher (MPE); A. Eckart (Primer Instituto de Física, Universidad de Colonia, Alemania [Cologne] e Instituto Max Planck de Radio Astronomía, Bonn, Alemania); F. Eisenhauer (MPE); N. M. Förster Schreiber (MPE); P. Garcia (Facultad de Ingeniería, Universidad de Oporto, Portugal; y CENTRA); F. Gao (Observatorio de Hamburgo, Universidad de Hamburgo, Alemania; y MPE); E. Gendron (LESIA); R. Genzel (MPE y Departamento de Física y Astronomía, Le Conte Hall, Universidad de California, Berkeley, EE.UU.); S. Gillessen (MPE); M. Habibi (MPE); X. Haubois (Observatorio Europeo Austral, Santiago, Chile [ESO Chile]); G. Heißel (LESIA); T. Henning (MPIA); S. Hippler (MPIA); M. Horrobin (Cologne); L. Jochum (ESO Chile); L. Jocou (IPAG); A. Kaufer (ESO Chile); P. Kervella (LESIA); S. Lacour (LESIA); V. Lapeyrère (LESIA); J.-B. Le Bouquin (IPAG); P. Léna (LESIA); D. Lutz (MPE); T. Ott (MPE); T. Paumard (LESIA); K. Perraut (IPAG); G. Perrin (LESIA); O. Pfuhl (ESO y MPE); S. Rabien (MPE); G. Rodríguez-Coira (LESIA); J. Shangguan (MPE); T. Shimizu (MPE); S. Scheithauer (MPIA); J. Stadler (MPE); O. Straub (MPE); C. Straubmeier (Cologne); E. Sturm (MPE); L. J. Tacconi (MPE); K. R. W. Tristram (ESO Chile); F. Vincent (LESIA); S. von Fellenberg (MPE); F. Widmann (MPE); E. Wieprecht (MPE); E. Wiezorrek (MPE); J. Woillez (ESO); S. Yazici (MPE y Cologne); y A. Young (MPE).

El equipo autor del artículo “Deep images of the Galactic Center with GRAVITY” (doi:10.1051/0004-6361/202142459) está formado por: R. Abuter (ESO), P. Arras (Instituto Max Planck de Astrofísica [MPA], Garching, Alemania; y Departamento de Física, Universidad Técnida de Múnich [TUM], Garching, Alemania); M. Bauböck (MPE y Departamento de Física, Universidad de Illinois, EE.UU.); H. Bonnet (ESO); W. Brandner (MPIA); G. Bourdarot (IPAG y MPE); V. Cardoso (CENTRA y CERN); Y. Clénet (LESIA); P. T. de Zeeuw (Leiden y MPE); J. Dexter (Colorado y MPE); Y. Dallilar (MPE); A. Drescher (MPE); A. Eckart (Cologne e Instituto Max Planck de Radioastronomía, Bonn, Alemania); F. Eisenhauer (MPE); T. Enßlin (MPA); N. M. Förster Schreiber (MPE); P. Garcia (Facultad de Ingeniería, Universidad de Oporto, Portugal y CENTRA); F. Gao (Observatorio de Hamburgo, Universidad de Hamburgo, Alemania; y MPE);  E. Gendron (LESIA); R. Genzel (MPE y Departamento de Física y Astronomía, Le Conte Hall, Universidad de California, Berkeley, EE.UU.); S. Gillessen (MPE); M. Habibi (MPE); X. Haubois (ESO Chile); G. Heißel (LESIA); T. Henning (MPIA); S. Hippler (MPIA); M. Horrobin (Cologne); A. Jiménez-Rosales (MPE); L. Jochum (ESO Chile); L. Jocou (IPAG); A. Kaufer (ESO Chile); P. Kervella (LESIA); S. Lacour (LESIA); V. Lapeyrère (LESIA); J.-B. Le Bouquin (IPAG); P. Léna (LESIA); D. Lutz (MPE); T. Ott (MPE); T. Paumard (LESIA); K. Perraut (IPAG); G. Perrin (LESIA); O. Pfuhl (ESO y MPE); S. Rabien (MPE); J. Shangguan (MPE); T. Shimizu (MPE); S. Scheithauer (MPIA); J. Stadler (MPE); O. Straub (MPE); C. Straubmeier (Cologne); E. Sturm (MPE); L.J. Tacconi (MPE); K. R. W. Tristram (ESO Chile); F. Vincent (LESIA); S. von Fellenberg (MPE); I. Waisberg (Departamento de Física de Partículas & Astrofísica; Instituto Weizmann de Ciencia, Israel y MPE); F. Widmann (MPE); E. Wieprecht (MPE); E. Wiezorrek (MPE); J. Woillez (ESO); S. Yazici (MPE y Cologne); A. Young (MPE) y G. Zins (ESO).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), así como dos telescopios de rastreo: VISTA, que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera APEX y ALMA, dos instalaciones que observan los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Reinhard Genzel
Director, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30000 3281
Correo electrónico: genzel@mpe.mpg.de

Julia Stadler
Max Planck Institute for Astrophysics
Garching bei München, Germany
Tlf.: +49 89 30000 2205
Correo electrónico: jstadler@mpe.mpg.de

Frank Eisenhauer
Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30000 3563
Correo electrónico: eisenhau@mpe.mpg.de

Stefan Gillessen
Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tlf.: +49 89 30000 3839
Móvil: +49 176 99 66 41 39
Correo electrónico: ste@mpe.mpg.de

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

Connect with ESO on social media

sábado, 11 de diciembre de 2021

El cometa Leonard se acerca a la Tierra a mitad de diciembre

El cometa Leonard se acerca a la Tierra a mitad de diciembre


MADRID, 7 Dic. (EUROPA PRESS)

Este diciembre se acerca a la Tierra el cometa C / 2021 A1 Leonard, una enorme roca formada por hielo, polvo y gas que proviene de la nube de Oort, en el confín del Sistema Solar.
Leonard hará su máximo acercamiento a la Tierra durante este mes, haciendo que sea posible su observación con unos prismáticos o un pequeño telescopio, incluso algunas predicciones apuntan a que tal vez sea posible observarlo a simple vista. En el hemisferio norte, el cometa Leonard tendrá su máximo acercamiento a la Tierra el próximo 12 de diciembre, cuando se encuentre a casi 35 millones de kilómetros de nuestro planeta. [...] Una forma práctica de ubicar la trayectoria del cometa Leonard es centrarse entre la constelación de la Osa Mayor y Arturo (la tercera estrella más brillante del cielo nocturno en la constelación del Boyero). Clic AQUÍ para seguir leyendo y ver la imagen.