viernes, 25 de marzo de 2022

Captan la imagen más nítida de un objeto astronómico inexplicable

Captan la imagen más nítida de un objeto astronómico inexplicable

Estos misteriosos círculos de radio fantasmales del espacio profundo han sido captados gracias al telescopio sudafricano MeerKAT, un radiotelescopio de 64 antenas


Sarah Romero 23/03/2022

Situado en el Cabo Norte de Sudáfrica, MeerKAT, este telescopio que escucha las señales de radio del espacio profundo, ha hecho posible que podamos contemplar la imagen más nítida de los círculos de radio impares (ORC), grandes objetos astronómicos circulares que brillan alrededor de los bordes en longitudes de onda de radio. Sus anillos son gigantescos, tienen alrededor de un millón de años luz de diámetro, es decir, es 16 veces más ancho que nuestra galaxia, la Vía Láctea; y parece un anillo humeante. ¿Qué es? Lo cierto es que los astrónomos aún no están seguros. El universo está repleto de objetos peculiares. [...] Estos ORC forman parte de la lista “WTF?” (what the fuck?, ¿qué carajo?) en la que se muestran todos aquellos fenómenos u objetos inexplicables para la astronomía actual. [...] Es curioso porque, a pesar de lo enormes que son estos objetos, son difíciles de ver: solo son visibles para los radiotelescopios. No se ven ni con telescopios de rayos X, como el Chandra de la NASA, ni de infrarrojo como el James Webb. Según las más recientes observaciones de ORC1C, muestran que las capas de este objeto son creadas por la radiación de electrones acelerados y tienen una estructura interna compleja hecha de múltiples arcosClic AQUÍ para seguir leyendo, ver la imagen y el vídeo.

La NASA confirma el descubrimiento de más de 5.000 planetas fuera del Sistema Solar

La NASA confirma el descubrimiento de más de 5.000 planetas fuera del Sistema Solar

En solo treinta años han sido encontrados una gran variedad de exoplanetas, incluidos algunos rocosos del tamaño de la Tierra


ABC Ciencia MADRID Actualizado:23/03/2022 10:53h

Los dos primeros exoplanetas, como se denominan los mundos fuera de nuestro sistema solar, fueron descubiertos en 1992 alrededor de un púlsar, una extraña estrella de neutrones. Desde entonces, la lista no ha parado de crecer gracias a las nuevas misiones, instrumentos y técnicas de detección. Cada cierto tiempo, un equipo de investigadores anuncia el hallazgo de uno o varios planetas nuevos, algunos formando parte de un mismo sistema. Hoy, treinta años después, ya han sido confirmados más de 5.000 mundos extrasolares, un hito científico que acaba de confirmar la NASA. Y, con toda seguridad, hay muchos más esperando. [...] "En mi opinión, es inevitable que encontremos algún tipo de vida en algún lugar, muy probablemente de algún tipo primitivo", dijo Wolszczan, citando la estrecha conexión entre la química de la vida en la Tierra y la química que se encuentra en todo el universo. Clic AQUÍ para seguir leyendo y ver la imagen.

viernes, 11 de marzo de 2022

Astrónomas descubren la molécula más grande hasta ahora en un disco de formación de planetas

Astrónomas descubren la molécula más grande hasta ahora en un disco de formación de planetas

8 de Marzo de 2022

Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, investigadoras del Observatorio de Leiden, en los Países Bajos, han detectado por primera vez dimetil éter en un disco de formación de planetas. Con nueve átomos, se trata de la molécula más grande identificada en un disco de este tipo hasta la fecha. También es un precursor de moléculas orgánicas de mayor tamaño que pueden conducir a la aparición de vida.

"A partir de estos resultados, podemos aprender más sobre el origen de la vida en nuestro planeta y, por lo tanto, tener una mejor idea del potencial de vida en otros sistemas planetarios. Es muy emocionante ver cómo estos hallazgos encajan en el panorama general", dice Nashanty Brunken, estudiante de máster en el Observatorio de Leiden, que pertenece a la Universidad de Leiden, y autora principal del estudio publicado hoy en Astronomy & Astrophysics.

El dimetil éter es una molécula orgánica comúnmente vista en nubes de formación estelar, pero nunca antes se había encontrado en un disco de formación de planetas. El equipo también hizo una detección tentativa de formiato de metilo, una molécula compleja similar al dimetil éter que también es una pieza clave en la construcción de moléculas orgánicas aún más grandes.

"Es realmente emocionante detectar por fin estas moléculas de mayor tamaño en los discos. Durante un tiempo pensamos que no iba a ser posible observarlos", afirma la coautora Alice Booth, también investigadora del Observatorio de Leiden.

Las moléculas se encontraron en el disco de formación de planetas que hay alrededor de la joven estrella IRS 48 (también conocida como Oph-IRS 48) con la ayuda de ALMA, un observatorio copropiedad del Observatorio Europeo Austral (ESO). IRS 48, ubicado a 444 años luz de distancia, en la constelación de Ofiuco, ha sido objeto de numerosos estudios porque su disco contiene una "trampa de polvo" asimétrica con forma de anacardo. Esta región, que probablemente se formó como resultado de un planeta recién nacido o una pequeña estrella compañera ubicada entre la estrella y la trampa de polvo, retiene un gran número de granos de polvo de tamaño milimétrico que pueden unirse y convertirse en objetos de tamaño kilómetro como cometas, asteroides y, potencialmente, incluso planetas.

Se cree que muchas moléculas orgánicas complejas, como el dimetil éter, surgen en nubes de formación estelar, incluso antes de que nazcan las estrellas mismas. En estos ambientes fríos, los átomos y las moléculas simples, como el monóxido de carbono, se adhieren a los granos de polvo, formando una capa de hielo y experimentando reacciones químicas que resultan en moléculas más complejas. La comunidad astronómica descubrió recientemente que la trampa de polvo que hay en el disco de IRS 48 también es un depósito de hielo que alberga granos de polvo cubiertos con este hielo rico en moléculas complejas. En esta región del disco es donde ALMA ha detectado signos de la molécula de dimetil éter: a medida que el calentamiento de IRS 48 sublima el hielo en gas, las moléculas atrapadas, heredadas de las nubes frías, se liberan y se vuelven detectables.

"Lo que hace que esto sea aún más emocionante es que ahora sabemos que estas moléculas complejas de mayor tamaño están disponibles para alimentar el proceso de formación de planetas en el disco", explica Booth. "Esto no se sabía antes, ya que en la mayoría de los sistemas estas moléculas están ocultas en el hielo".

El descubrimiento del dimetil éter sugiere que muchas otras moléculas complejas que se detectan comúnmente en regiones de formación estelar también pueden estar al acecho en estructuras heladas presentes en discos de formación de planetas. Estas moléculas son las precursoras de moléculas prebióticas como los aminoácidos y los azúcares, que son algunos de los componentes básicos de la vida.

Estudiando su formación y evolución se puede mejorar nuestra comprensión de cómo las moléculas prebióticas terminan en los planetas, incluido el nuestro. "Estamos muy contentos de poder comenzar a seguir todo el viaje de estas moléculas complejas desde las nubes que forman estrellas hasta los discos de formación de planetas y cometas. Esperemos que, con más observaciones, podamos acercarnos un paso más a la comprensión del origen de las moléculas prebióticas en nuestro propio Sistema Solar" , afirma Nienke van der Marel, investigadora del Observatorio de Leiden que también participó en el estudio.

Los futuros estudios de IRS 48 con el Telescopio Extremadamente Grande (ELT) de ESO, actualmente en construcción en Chile, y que comenzará a operar a finales de esta década, permitirán al equipo estudiar la química de las regiones más internas del disco, donde pueden estar formándose planetas como la Tierra.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico "A major asymmetric ice trap in a planet-forming disk: III. Primera detección de dimetil éter" (doi: 10.1051/0004-6361/202142981) publicado en la revista Astronomy & Astrophysics.

Esta publicación se lanzó en el Día Internacional de la Mujer de 2022 y presenta investigaciones realizadas por seis investigadoras que se identifican como mujeres.

El equipo está compuesto por Nashanty G.C. Brunken (Observatorio de Leiden, Universidad de Leiden, Países Bajos [Leiden]); Alice S. Booth (Leiden); Margot Leemker (Leiden); Pooneh Nazari (Leiden); Nienke van der Marel (Leiden); Ewine F. van Dishoeck (Observatorio de Leiden, Instituto Max-Planck de Física Extraterrestre, Garching, Alemania).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), así como dos telescopios de rastreo: VISTA, que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera APEX y ALMA, dos instalaciones que observan los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Nashanty Brunken
Leiden Observatory, Leiden University
Leiden, The Netherlands
Correo electrónico: brunken@strw.leidenuniv.nl

Alice Booth
Leiden Observatory, Leiden University
Leiden, The Netherlands
Tlf.: +31 71 527 5737
Correo electrónico: abooth@strw.leidenuniv.nl

Nienke van der Marel
Leiden Observatory, Leiden University
Leiden, The Netherlands
Tlf.: +31 71 527 5872
Correo electrónico: nmarel@strw.leidenuniv.nl

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tlf.: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

Connect with ESO on social media

viernes, 4 de marzo de 2022

Se descubre que el sistema con agujero negro más cercano, en realidad no tiene agujero negro

Se descubre que el sistema con agujero negro más cercano, en realidad no tiene agujero negro

2 de Marzo de 2022

En 2020, un equipo dirigido por astrónomos del Observatorio Europeo Austral (ESO) informó del descubrimiento del agujero negro más cercano a la Tierra, ubicado a solo 1.000 años luz de distancia, en el sistema HR 6819. Pero los resultados de su estudio fueron impugnados por otras investigadoras, incluido un equipo internacional con sede en KU Leuven, Bélgica. En un artículo publicado hoy, estos dos equipos se han unido para comunicar que, de hecho, no hay un agujero negro en HR 6819, sino que se trata de un sistema de dos estrellas "vampiro" en una etapa rara y de corta duración de su evolución.

El estudio original sobre HR 6819 recibió mucha atención tanto por parte de la prensa como de la comunidad científica. Thomas Rivinius, astrónomo de ESO con sede en Chile y autor principal de ese artículo, no se sorprendió por la recepción por parte de la comunidad astronómica ante su descubrimiento del agujero negro. "No solo es normal, sino que debería ser común que los resultados sean revisados", afirma, "y un resultado que llega a los titulares, aún más".

Rivinius y sus colegas estaban convencidos de que la mejor explicación a los datos que tenían, obtenidos con el Telescopio MPG/ESO de 2,2 metros, era que HR 6819 era un sistema triple, con una estrella orbitando un agujero negro cada 40 días y una segunda estrella en una órbita mucho más amplia. Pero un estudio dirigido por Julia Bodensteiner, entonces estudiante de doctorado en KU Leuven, Bélgica, propuso una explicación diferente para los mismos datos: HR 6819 también podría ser un sistema con solo dos estrellas en una órbita de 40 días y ningún agujero negro en absoluto. Este escenario alternativo requeriría que una de las estrellas fuera "despojada" de una gran parte de su masa, lo que significa que, en un momento anterior, esta masa había sido “robada” por otra estrella.

"Habíamos llegado al límite de los datos existentes, por lo que tuvimos que recurrir a una estrategia de observación diferente para decidir entre los dos escenarios propuestos por los dos equipos", dice la investigadora de KU Leuven, Abigail Frost, quien dirigió el nuevo estudio publicado hoy en la revista Astronomy & Astrophysics.

Para resolver el misterio, los dos equipos trabajaron juntos con el fin de obtener datos nuevos y más nítidos de HR 6819. Para ello utilizaron el Very Large Telescope (VLT) y el Very Large Telescope Interferometer (VLTI) de ESO. "El VLTI fue la única instalación que pudo proporcionarnos los datos decisivos que necesitábamos para distinguir entre las dos explicaciones", declara Dietrich Baade, autor tanto del estudio original de HR 6819 como del nuevo artículo publicado en Astronomy & Astrophysics. Como no tenía sentido pedir la misma observación dos veces, los dos equipos unieron fuerzas, lo que les permitió aunar sus recursos y conocimientos para explicar la verdadera naturaleza de este sistema. Dado que no tenía sentido solicitar dos veces la misma observación, los dos equipos unieron fuerza, lo cual les permitió sumar sus recursos y conocimientos con el fin de despejar esta incógnita.

"Los escenarios que buscábamos eran bastante claros, muy diferentes y fácilmente distinguibles con el instrumento adecuado", dice Rivinius. "Estábamos de acuerdo en que había dos fuentes de luz en el sistema, por lo que la pregunta era si orbitaban entre sí de cerca, como en el escenario de estrellas despojadas, o estaban muy separadas entre sí, como en el escenario de agujero negro".

Para distinguir entre las dos propuestas, los equipos utilizaron tanto el instrumento GRAVITY del VLTI como el instrumento Multi Unit Spectroscopic Explorer (MUSE, instalado en el VLT de ESO.

"MUSE confirmó que no había un compañero brillante en una órbita más amplia, mientras que la alta resolución espacial de GRAVITY fue capaz de resolver dos fuentes brillantes separadas por solo un tercio de la distancia entre la Tierra y el Sol", afirma Frost."Estos datos demostraron ser la pieza final del rompecabezas y nos permitieron concluir que HR 6819 es un sistema binario sin agujero negro.

"Nuestra mejor interpretación hasta ahora es que captamos este sistema binario poco después de que una de las estrellas hubiera succionado la atmósfera de su estrella compañera. Se trata de un fenómeno común en los sistemas binarios cercanos, a veces denominado "vampirismo estelar" en la prensa", explica Bodensteiner, ahora miembro de ESO en Alemania y autora del nuevo estudio. "Mientras la estrella donante era despojada de parte de su material, la estrella receptora comenzó a girar más rápidamente".

"Captar una fase de este tipo, posterior a la interacción, es extremadamente difícil, ya que es muy corta", agrega Frost. "Esto hace que nuestros hallazgos sobre HR 6819 sean muy emocionantes, ya que es un candidato perfecto para estudiar cómo afecta este vampirismo a la evolución de las estrellas masivas y, a su vez, a la formación de los fenómenos asociados, incluidas las ondas gravitacionales y las violentas explosiones de supernovas".

El nuevo equipo recién formado, que aúna a Leuven y a ESO, planea monitorear HR 6819 más de cerca utilizando el instrumento GRAVITY del VLTI. El equipo llevará a cabo un estudio conjunto del sistema a lo largo del tiempo para comprender mejor su evolución, restringir sus propiedades y utilizar ese conocimiento para aprender más sobre otros sistemas binarios.

En cuanto a la búsqueda de agujeros negros, el equipo sigue siendo optimista. Para Rivinius, "los agujeros negros de masa estelar son muy esquivos debido a su naturaleza”"Pero las estimaciones de orden de magnitud –agrega Baabe– sugieren que hay de decenas a cientos de millones de agujeros negros solo en la Vía Láctea". Es solo cuestión de tiempo que la comunidad astronómica los descubra.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico titulado “HR 6819 is a binary system with no black hole: Revisiting the source with infrared interferometry and optical integral field spectroscopy” (DOI: 10.1051/0004-6361/202143004), que aparece en la revista Astronomy & Astrophysics.

Ha recibido financiación del consejo Europeo de Investigación (ERC, European Research Council) bajo el programa de investigación e innovación Horizonte 2020 de la Unión Europea (acuerdo de financiación número 772225: MULTIPLES; PI: Hugues Sana).

El equipo está formado por A. J. Frost (Instituto de Astronomía, KU Leuven, Bélgica [KU Leuven]); J. Bodensteiner (Observatorio Europeo Austral, Garching, Alemania [ESO]); Th. Rivinius (Observatorio Europeo Austral, Santiago, Chile [ESO Chile]); D. Baade (ESO); A. Mérand (ESO); F. Selman (ESO Chile); M. Abdul-Masih (ESO Chile); G. Banyard (KU Leuven); E. Bordier (KU Leuven, ESO Chile); K. Dsilva (KU Leuven); C. Hawcroft (KU Leuven); L. Mahy (Real Observatorio de Bélgica, Bruselas, Bélgica); M. Reggiani (KU Leuven); T. Shenar (Instituto Anton Pannekoek de Astronomía, Universidad de Ámsterdam, Países Bajos); M. Cabezas (Instituto Astronómico, Academia de Ciencias de la República Checa, Praga, República Checa [ASCR]); P. Hadrava (ASCR); M. Heida (ESO); R. Klement (Conjunto CHARA de la Universidad Estatal de Georgia, Observatorio del Monte Wilson, Mount Wilson, EE. UU.) y H. Sana (KU Leuven).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), así como dos telescopios de rastreo: VISTA, que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera APEX y ALMA, dos instalaciones que observan los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

José Miguel Mas Hesse
Centro de Astrobiología (INTA-CSIC)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es

Abigail Frost
KU Leuven
Leuven, Belgium
Tlf.: +56-2-2463-3280
Móvil: +56-9-3548-9255
Correo electrónico: abi.frost@kuleuven.be

Thomas Rivinius
European Southern Observatory
Santiago, Chile
Tlf.: +56-9-8288-4950
Correo electrónico: triviniu@eso.org

Julia Bodensteiner
European Southern Observatory
Garching bei München, Germany
Tlf.: +49-89-3200-6409
Correo electrónico: julia.bodensteiner@eso.org

Dietrich Baade
European Southern Observatory
Garching bei München, Germany
Tlf.: +49-89-6096-295
Correo electrónico: dbaade@eso.org

Hugues Sana
KU Leuven
Leuven, Belgium
Tlf.: +32-16-3743-61
Correo electrónico: hugues.sana@kuleuven.be

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tlf.: +49-89-3200-6670
Móvil: +49-151-2416-6400
Correo electrónico: press@eso.org

Connect with ESO on social media

Los astrónomos detectan una explosión colosal. Y solo pasa una vez cada 1.000 años

Los astrónomos detectan una explosión colosal. Y solo pasa una vez cada 1.000 años

Esto nunca volverá a suceder en los tiempos modernos



Por Loukia Papadopoulos 28 de febrero de 2022

Los astrónomos han estudiado durante mucho tiempo las estrellas moribundas porque contienen información crucial sobre nuestro universo y crean algunas imágenes fascinantes. Ahora, la investigación sobre una estrella muerta en el borde de la Vía Láctea puede haber producido evidencia de un tipo de explosión termonuclear gigantesca que nunca antes se había visto, como informó Live Science el viernes pasado. El evento puede tardar 1.000 años en volver a ocurrir, lo que significa que nunca se volverá a ver en nuestra vida. [...] El hiper estallido ocurrió en lo profundo de una estrella de neutrones; es el resultado de cientos o miles de años de acumulación de calor y presión. La estrella que produjo este brote se llama MAXI J0556–332. (El estudio aún no ha sido revisado por pares)Clic AQUÍ para seguir leyendo y ver la imagen.