viernes, 15 de noviembre de 2024

El sorprendente túnel interestelar descubierto por científicos que empieza alrededor del Sistema Solar y se dirige hacia la constelación Centaurus

El sorprendente túnel interestelar descubierto por científicos que empieza alrededor del Sistema Solar y se dirige hacia la constelación Centaurus


Alejandra Martins, BBC News Mundo 14 noviembre 2024

Nuestro Sistema Solar se encuentra en una zona del espacio llamada Burbuja Caliente Local, (Local Hot Bubble o LHB por sus siglas en inglés). Un telescopio de capacidad incomparable permitió cartografiar esa burbuja para producir un mapa tridimensional. Y al estudiar ese mapa científicos en Alemania descubrieron no solo grandes variaciones en temperatura, sino algo totalmente inesperado: un túnel interestelar. [...] “Esta región del espacio se caracteriza por un gas caliente de muy baja densidad, de un millón de grados Kelvin de temperatura y una densidad de menos de 0,01 partículas por cm3”. La burbuja emite rayos X y se extiende unos mil años luz alrededor del Sistema Solar. Yeung y sus colegas utilizaron datos del observatorio eROSITA, un poderoso telescopio de rayos X, que hizo posible crear el mapa tridimensional de la Burbuja Caliente Local.
Lo que más sorprendió a los científicos fue el descubrimiento de un túnel interestelar en dirección a la constelación Centaurus. [...] Michael Yeung explicó a BBC mundo que un túnel interestelar “es simplemente una conexión entre dos restos de supernovas o superburbujas llenas de gas caliente”. “Definitivamente no es un agujero de gusano, como podría pensarse por el nombre”. [...] Esos estudios podrían revelar rastros de una explosión de supernova "que ocurrió no hace mucho tiempo".

viernes, 8 de noviembre de 2024

Los científicos acaban de descubrir un misterioso objeto en el espacio profundo

Los científicos acaban de descubrir un misterioso objeto en el espacio profundo

Un descubrimiento cósmico que desafía la física: una estrella de neutrones que gira 716 veces por segundo y brilla 100.000 veces más que el Sol. ¿Cómo es posible?



Silvia Cabrero Díez, 7 nov. 2024 16:55h.

En el inmenso cosmos, los objetos extremos nos revelan los secretos más profundos del universo. Los científicos acaban de confirmar uno de estos fenómenos: una estrella de neutrones que gira 716 veces por segundo, un ritmo extraordinario para una estrella.
Esta maravilla cósmica, conocida como 4U 1820-30, desafía lo imaginable tanto por su densidad como por su velocidad de rotación, y representa un objeto sin parangón en la Vía Láctea.
Las estrellas de neutrones son los restos densos de una estrella masiva que ha colapsado tras una explosión de supernova. Pese a tener solo unos 12 kilómetros de diámetro, pueden albergar una masa 1,4 veces mayor que la del Sol, comprimida en un espacio tan pequeño que un fragmento del tamaño de un terrón de azúcar pesaría mil millones de toneladas. [...]
El descubrimiento de esta estrella de rotación ultrarrápida fue posible gracias al instrumento NICER (Neutron star Interior Composition Explorer), un telescopio de rayos X instalado en la Estación Espacial Internacional. [...]
Otra particularidad de 4U 1820-30 es su compañera de viaje. Esta estrella de neutrones no está sola, sino que forma parte de un sistema binario a 26.000 años luz de la Tierra.
La atracción gravitacional de la estrella de neutrones es tan intensa que arrastra material de su compañera. Esta interacción causa “explosiones termonucleares” que, además de liberar una inmensa cantidad de energía, pueden forjar elementos pesados como el oro y el platinoSegún el investigador Jerome Chenevez, estas explosiones hacen que 4U 1820-30 brille hasta 100.000 veces más que el Sol.

Clic AQUÍ para seguir leyendo y ver las imágenes.

Encuentran un “pequeño” objeto espacial capaz de emitir casi tanta energía como el corazón de una galaxia entera… y no sabemos qué es

Encuentran un “pequeño” objeto espacial capaz de emitir casi tanta energía como el corazón de una galaxia entera… y no sabemos qué es

Un nuevo estudio descubre un posible microcuásar capaz de emitir casi tanta energía como el agujero negro supermasivo del interior de una galaxia


Ignacio Crespo @SdeStendhal, Madrid Creada: 07.11.2024 10:55

Se llama V4641 Sgr, está cerca, es diminuto y emite casi tanta energía como los chorros de radiación más poderosos que conocemos. Así es el nuevo objeto astronómico que ha descubierto el Observatorio Internacional de Rayos Gamma Cherenkov de Aguas a Gran Altitud (HAWC), aunque, tal vez, habría que matizar eso de “cerca”. En ambos casos estamos hablando en términos relativos. Cuando decimos “cerca” nos referimos a 20.000 años luz que es mucho comparado con nuestras distancias de Google Maps, pero una nimiedad a escala astronómica. De hecho, el objeto más cercano capaz de emitir energías similares se encuentra a unos 600 millones de años luz. [...]
Probablemente estaríamos hablando de un microcuásar, que es una estrella especialmente grande o una estrella de neutrones (que es una versión súper condensada de una estrella moribunda) que gira en torno a un agujero negro que la absorbe mientras emite dos grandes chorros de energía en direcciones contrarias, como un faro. [...] Los eventos astronómicos capaces de emitir energías similares son agujeros negros supermasivos que se encuentran en el corazón de algunas galaxias, mucho más grandes que esta misteriosa fuente de energía.

Clic AQUÍ para seguir leyendo y ver las imágenes.

viernes, 1 de noviembre de 2024

Una nueva imagen de ESO capta a un lobo oscuro en el cielo

Una nueva imagen de ESO capta a un lobo oscuro en el cielo


31 de Octubre de 2024

Por Halloween, el Observatorio Europeo Austral (ESO) revela esta espeluznante imagen de una nebulosa oscura que crea la ilusión de una silueta similar a la de un lobo sobre un colorido telón de fondo cósmico. Apodada la Nebulosa del Lobo Oscuro, fue captada en una imagen de 283 millones de píxeles por el VLT Survey Telescope (VST), instalado en el Observatorio Paranal de ESO, en Chile.

Encontrada en la constelación de Escorpio, cerca del centro de la Vía Láctea en el cielo, la Nebulosa del Lobo Oscuro se encuentra a unos 5.300 años luz de la Tierra. Esta imagen ocupa un área en el cielo equivalente a cuatro lunas llenas, pero en realidad es parte de una nebulosa aún más grande llamada Gum 55. Si se fijan bien, el lobo podría ser incluso un hombre lobo, con las manos listas para agarrar a los transeúntes desprevenidos...

Si pensaban que la oscuridad es igual al vacío, piénsenlo de nuevo. Las nebulosas oscuras son nubes frías de polvo cósmico, tan densas que oscurecen la luz de las estrellas y otros objetos que se encuentran detrás de ellas. Como su nombre indica, a diferencia de otras nebulosas, no emiten luz visible. Los granos de polvo que hay en su interior absorben la luz visible y solo dejan pasar la radiación en longitudes de onda más largas, como la luz infrarroja. La comunidad astronómica estudia estas nubes de polvo congelado porque a menudo contienen nuevas estrellas en formación.

Por supuesto, rastrear la presencia fantasmal del lobo en el cielo solo es posible porque contrasta con un fondo brillante. Esta imagen muestra con espectacular detalle cómo el lobo oscuro destaca contra las brillantes nubes de formación estelar que hay detrás de él. Las coloridas nubes están formadas principalmente por gas de hidrógeno y brillan en tonos rojizos, excitado por la intensa radiación UV de las estrellas recién nacidas que hay en su interior.

Algunas nebulosas oscuras, como la Nebulosa del Saco de Carbón, se pueden ver a simple vista (y juegan un papel clave en la forma en que los primeros pueblos nativos interpretaron el cielo [1]) pero no es el caso del Lobo Oscuro. Esta imagen fue creada utilizando datos del VLT Survey Telescope, propiedad del Instituto Nacional de Astrofísica de Italia (INAF) e instalado en  el Observatorio Paranal de ESO, en el desierto de Atacama, en Chile. El telescopio está equipado con una cámara especialmente diseñada para cartografiar el cielo del sur en luz visible.

La imagen se compiló a partir de imágenes tomadas en diferentes momentos, cada una con un filtro que deja entrar un color de luz diferente. Todas fueron captadas durante el sondeo VPHAS+ (VST Photometric Hα Survey of the Southern Galactic Plane and Bulge, sondeo fotométrico en Hα del plano y bulbo galácticos del cielo austral con el VST), que ha estudiado unos 500 millones de objetos en nuestra Vía Láctea. Sondeos como este ayudan a la comunidad científica a comprender mejor el ciclo de vida de las estrellas dentro de nuestra galaxia, y los datos obtenidos se hace públicos a través del portal científico de ESO. Exploren este tesoro de datos ustedes mismos: ¿quién sabe qué otras formas espeluznantes descubrirán en la oscuridad?

Notas

[1] Los mapuches del centro-sur de Chile se refieren a la Nebulosa del Saco de Carbón como 'pozoko' (pozo de agua), y los incas la llamaron 'yutu' (un ave parecida a una perdiz).

Información adicional

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Juan Carlos Muñoz Mateos
ESO Media Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6176
Correo electrónico: jmunoz@eso.org

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Teléfono: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

viernes, 25 de octubre de 2024

Descubren el primer agujero negro triple

Descubren el primer agujero negro triple

Su existencia cuestiona el origen de los agujeros negros


EFE,  24 de octubre de 2024, 17:17

Un equipo de investigadores del Instituto de Tecnología de Massachusetts (MIT) y del Instituto Tecnológico de California ha descubierto que V404 Cygni, un agujero negro situado a unos 8.000 años luz de la Tierra, es un agujero triple, el primero conocido. Alrededor de ese agujero negro central gira en espiral una estrella pequeña cada 6,5 días, formando un sistema binario habitual entre este tipo de objetos del espacio. Lo sorpresivo para los investigadores ha sido encontrar otra estrella lejana que también orbita alrededor del agujero cada 70.000 años.
El hallazgo aparece descrito en la revista Nature y su existencia cuestiona el origen de los agujeros negros.
Hasta ahora, se consideraba que los agujeros negros eran el resultado de un proceso conocido como supernova, en el que una estrella moribunda explota violentamente liberando una gran cantidad de energía y luz que acaba convirtiéndose en un agujero negro invisible. Los investigadores consideran que para que alrededor del agujero negro triple orbiten dos estrellas, se tuvo que haber formado por un proceso más suave en el que una estrella se habría hundido sobre sí misma sin una gran explosión que perturbara a otros objetos.

viernes, 18 de octubre de 2024

El telescopio espacial James Webb descubre que un exoplaneta cercano es el primer "mundo de vapor" de su tipo

El telescopio espacial James Webb descubre que un exoplaneta cercano es el primer "mundo de vapor" de su tipo

"Esta es la primera vez que vemos algo así"


Robert Lea, 11 de octubre de 2024

Un planeta alienígena cercano es el primero de su tipo, según sugieren nuevas observaciones del Telescopio Espacial James Webb (JWST).
Ubicado a unos 100 años luz de la Tierra, el exoplaneta está envuelto en una espesa capa de vapor. Este mundo, denominado GJ 9827 d, tiene aproximadamente el doble del tamaño de la Tierra, tres veces más masa que nuestro planeta y una atmósfera compuesta casi en su totalidad de vapor de agua.
"Es la primera vez que vemos algo así", dijo en un comunicado Eshan Raul, miembro del equipo y ex estudiante de la Universidad de Michigan, actualmente en la Universidad de Wisconsin-Madison . "El planeta parece estar compuesto principalmente de vapor de agua caliente, lo que lo convierte en algo que llamamos un 'mundo de vapor'. Para ser claros, este planeta no es hospitalario al menos para los tipos de vida con los que estamos familiarizados en la Tierra ".
El equipo de estudio, dirigido por Caroline Piaulet-Ghorayeb del Instituto Trottier de Investigación sobre Exoplanetas de la Universidad de Montreal, descubrió la naturaleza vaporosa de GJ 9827 d utilizando una técnica llamada " espectroscopia de transmisión ".

Clic AQUÍ para seguir leyendo y ver la imagen.

viernes, 11 de octubre de 2024

Rareza espacial: descubren la galaxia con disco giratorio más distante

Rareza espacial: descubren la galaxia con disco giratorio más distante

7 de Octubre de 2024

Un equipo de investigadores e investigadoras ha descubierto la galaxia similar a la Vía Láctea más distante observada hasta ahora. Apodada REBELS-25, esta galaxia de disco parece tan ordenada como las galaxias actuales, pero la vemos tal como era cuando el universo tenía solo 700 millones de años. Esto resulta sorprendente ya que, de acuerdo con nuestra comprensión actual de la formación de galaxias, se espera que estas galaxias tempranas parezcan más caóticas. La rotación y la estructura de REBELS-25 se revelaron utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), del que es socio el Observatorio Europeo Austral (ESO).

Las galaxias que vemos hoy en día han recorrido un largo camino desde esos orígenes caóticos y grumosos que la comunidad astronómica suele observar cuando estudia el universo temprano. "De acuerdo con nuestra comprensión de la formación de galaxias, esperamos que la mayoría de las galaxias tempranas sean pequeñas y parezcan choques de trenes", afirma Jacqueline Hodge, astrónoma de la Universidad de Leiden (Países Bajos) y coautora del estudio.

Estas galaxias tempranas y desordenadas se fusionan entre sí y luego evolucionan hacia formas más suaves a un ritmo increíblemente lento. Las teorías actuales sugieren que, para que una galaxia sea tan ordenada como nuestra propia Vía Láctea (un disco giratorio con estructuras tan definidas como son los brazos espirales), deben haber transcurrido miles de millones de años de evolución. La detección de REBELS-25, sin embargo, desafía esa escala de tiempo.

En el estudio, aceptado para su publicación en la revista Monthly Notices of the Royal Astronomical Society, el equipo descubrió que REBELS-25 es la galaxia más distante jamás descubierta con un disco en intensa rotación. La luz que nos llega desde esta galaxia se emitió cuando el universo tenía solo 700 millones de años, apenas el cinco por ciento de su edad actual (13.800 millones), lo que hace que la rotación ordenada de REBELS-25 sea algo inesperado. "Ver una galaxia con tales similitudes con nuestra propia Vía Láctea, que está fuertemente dominada por la rotación, desafía nuestra comprensión sobre la rapidez con la que evolucionan las galaxias del universo temprano hasta convertirse en las galaxias ordenadas que vemos en el cosmos actual", declara Lucie Rowland, estudiante de doctorado en la Universidad de Leiden y primera autora del estudio.

REBELS-25 fue detectado inicialmente en observaciones previas del mismo equipo, también realizadas con ALMA (que se encuentra en el desierto de Atacama, en Chile). En ese momento, fue un descubrimiento emocionante que mostraba indicios de rotación, pero la resolución de los datos no era lo suficientemente fina como para estar seguros. Para discernir adecuadamente la estructura y el movimiento de la galaxia, el equipo realizó observaciones de seguimiento con ALMA a una resolución más alta, lo que confirmó su naturaleza de récord. "ALMA es el único telescopio existente que cuenta con la sensibilidad y resolución necesarias para lograr esto", dice Renske Smit, investigadora de la Universidad John Moores de Liverpool (Reino Unido) y también coautora del estudio.

Sorprendentemente, los datos también ofrecieron indicios de características más desarrolladas, similares a las de la Vía Láctea, como una barra central alargada e incluso brazos espirales, aunque se necesitarán más observaciones para confirmarlo. "Encontrar más evidencia de estructuras más evolucionadas sería un descubrimiento emocionante, ya que sería la galaxia más distante con tales estructuras observadas hasta la fecha", aclara Rowland.

Estas futuras observaciones de REBELS-25, junto con otros descubrimientos de galaxias tempranas en rotación, tendrán el potencial de transformar nuestra comprensión tanto de la formación temprana de galaxias como de la evolución del universo en su conjunto.

Información adicional

Esta investigación se presenta en un artículo científico titulado " REBELS-25: Discovery of a dynamically cold disc galaxy at z=7.31", que aparece en la revista Monthly Notices of the Royal Astronomical Society.

Las observaciones se llevaron a cabo como parte del Gran Programa de ALMA llamado REBELS: Reionization Era Bright Emission Lines Survey.

El equipo está compuesto por L. E. Rowland (Observatorio de Leiden, Universidad de Leiden, Países Bajos [Leiden]); J. Hodge (Leiden); R. Bouwens (Leiden); P. M. Piña (Leiden); A. Hygate (Leiden); H. Algera (Centro de Ciencias Astrofísicas, Universidad de Hiroshima, Japón [HASC]; Observatorio Astronómico Nacional de Japón, Japón); M. Aravena (Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Chile); R. Bowler (Centro de Astrofísica Jodrell Bank, Universidad de Manchester, Reino Unido); E. da Cunha (Centro Internacional de Investigación en Radioastronomía, Universidad de Australia Occidental, Australia; Centro de Excelencia ARC para toda la astrofísica del cielo en 3 dimensiones); P. Dayal (Instituto Astronómico Kapteyn, Universidad de Groningen, Países Bajos); A. Ferrara (Escuela Normal Superior, Italia [SNS]); T. Herard-Demanche (Leiden); H. Inami (HASC); I. van Leeuwen (Leiden); I. de Looze (Observatorio Sterrenkundig, Universidad de Gante, Bélgica); P. Oesch (Departamento de Astronomía, Universidad de Ginebra, Suiza; Cosmic Dawn Center, Dinamarca); A. Pallottini (SNS); S. Phillips (Instituto de Investigación en Astrofísica, Universidad John Moores de Liverpool, Reino Unido [LJMU]); M. Rybak (Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Delft, Países Bajos; Leiden; Instituto Neerlandés de Investigaciones Espaciales, Países Bajos); S. Schouws (Leiden); R. Smit (LJMU); L. Sommovigo (Centro de Astrofísica Computacional, Instituto Flatiron, EE.UU.); M. Stefanon (Departamento de Astronomía y Astrofísica, Universidad de Valencia, España; Grupo de Astrofísica Extragaláctica y Cosmología, Universidad de Valencia, España); P. van der Werf (Leiden).

El conjunto ALMA, (Atacama Large Millimeter/submillimeter Array) es una instalación astronómica internacional fruto de la colaboración entre ESO, la Fundación Nacional para la Ciencia de EE.UU. (NSF, National Science Foundation) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS, National Institutes of Natural Sciences) en cooperación con la República de Chile. ALMA está financiado por ESO en nombre de sus países miembros; por la NSF en cooperación con el Consejo Nacional de Investigación de Canadá (NRC, National Research Council) y el Consejo Nacional de Ciencia y Tecnología (NSTC, National Science and Technology Council) de Taiwán, y por el NINS, en cooperación con la Academia Sínica (AS) de Taiwán y el Instituto de Astronomía y Ciencias Espaciales de Corea (KASI, Korea Astronomy and Space Science Institute). La construcción y operaciones de ALMA están lideradas por ESO en nombre de sus países miembros; por el Observatorio Nacional de Radioastronomía (NRAO, National Radio Astronomy Observatory), gestionado por Associated Universities, Inc. (AUI), en representación de América del Norte; y por el Observatorio Astronómico Nacional de Japón (NAOJ, National Astronomical Observatory of Japan) en representación de Asia Oriental. El Observatorio Conjunto ALMA (JAO, Joint ALMA Observatory) proporciona al proyecto la unificación tanto del liderazgo como de la gestión de la construcción, puesta a punto y operaciones de ALMA.

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Lucie Rowland
Leiden Observatory, University of Leiden
Leiden, The Netherlands
Teléfono: +31 71 527 2727
Correo electrónico: lrowland@strw.leidenuniv.nl

Jacqueline Hodge
Leiden Observatory, University of Leiden
Leiden, The Netherlands
Teléfono: +31 71 527 8450
Correo electrónico: hodge@strw.leidenuniv.nl

Renske Smit
Astrophysics Research Institute, Liverpool John Moores University
Liverpool, UK
Teléfono: +44-151-231-2922
Correo electrónico: R.Smit@ljmu.ac.uk

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Teléfono: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

sábado, 5 de octubre de 2024

Descubren un planeta que orbita alrededor de la estrella individual más cercana a nuestro Sol

Descubren un planeta que orbita alrededor de la estrella individual más cercana a nuestro Sol

1 de Octubre de 2024

Utilizando el Very Large Telescope (VLT), del Observatorio Europeo Austral (VLT), un equipo de astrónomos y astrónomas ha descubierto un exoplaneta orbitando la estrella de Barnard, la estrella más cercana a nuestro Sol. En este exoplaneta recién descubierto, que tiene al menos la mitad de la masa de Venus, un año dura poco más de tres días terrestres. Las observaciones del equipo también indican la posible existencia de otros tres candidatos a exoplanetas en varias órbitas alrededor de la estrella.

Ubicada a solo seis años luz de distancia, la estrella de Barnard es el segundo sistema estelar más cercano, después del grupo de tres estrellas de Alfa Centauri, y la estrella individual más cercana a nosotros. Debido a su proximidad, es un objetivo principal en la búsqueda de exoplanetas similares a la Tierra. A pesar de una detección prometedora que tuvo lugar en 2018, hasta ahora no se había confirmado ningún planeta que orbitara la estrella de Barnard.

El descubrimiento de este nuevo exoplaneta, anunciado en un artículo publicado hoy en la revista Astronomy & Astrophysics, es el resultado de las observaciones realizadas durante los últimos cinco años con el VLT de ESO, ubicado en el Observatorio Paranal, en Chile. "Aunque nos llevara mucho tiempo, siempre estuvimos seguros de que podíamos encontrar algo", declara Jonay González Hernández, investigador del Instituto de Astrofísica de Canarias (España) y autor principal del artículo. El equipo buscaba señales de posibles exoplanetas dentro de la zona habitable o templada de la estrella de Barnard, el rango donde puede existir agua líquida en la superficie del planeta. A menudo, la comunidad astronómica se centra en el estudio de las enanas rojas (como la estrella de Barnard) porque los planetas rocosos de baja masa son más fáciles de detectar en su entorno, algo más complejo de hacer si hablamos de estrellas más grandes, similares al Sol. [1]

Barnard b [2], como se llama el exoplaneta recién descubierto, está veinte veces más cerca de la estrella de Barnard que Mercurio del Sol. Orbita su estrella en 3,15 días terrestres y tiene una temperatura superficial de alrededor de 125 °C"Barnard b es uno de los exoplanetas de menor masa conocidos y uno de los pocos conocidos con una masa menor que la de la Tierra. Pero el planeta está demasiado cerca de la estrella anfitriona, más cerca que la zona habitable", explica González Hernández. "Incluso si la estrella es unos 2.500 grados más fría que nuestro Sol, hace demasiado calor como para mantener agua líquida en la superficie del planeta."

Para sus observaciones, el equipo utilizó ESPRESSO, un instrumento de alta precisión diseñado para medir el bamboleo de una estrella causado por la atracción gravitacional de uno o más planetas en órbita. Los resultados obtenidos de estas observaciones fueron confirmados por los datos de otros instrumentos, también especializados en la búsqueda de exoplanetas: HARPS, en el Observatorio La Silla de ESO, HARPS-N y CARMENES. Sin embargo, los nuevos datos no respaldan la existencia del exoplaneta reportado en 2018. 

Además del planeta confirmado, el equipo internacional también encontró indicios de la presencia de otros tres candidatos a exoplanetas orbitando la misma estrella. Sin embargo, estos candidatos requerirán observaciones adicionales con ESPRESSO para ser confirmados. "Ahora tenemos que seguir observando esta estrella para confirmar las otras señales de posibles candidatos", afirma Alejandro Suárez Mascareño, también investigador del Instituto de Astrofísica de Canarias y coautor del estudio. "Pero el descubrimiento de este planeta, junto con otros descubrimientos anteriores como Proxima b y d, muestra que nuestro patio trasero cósmico está lleno de planetas de baja masa".

El Extremely Large Telescope (ELT) de ESO, actualmente en construcción, está destinado a transformar el campo de la investigación de exoplanetas. El instrumento ANDES del ELT permitirá a la comunidad científica detectar más de estos pequeños planetas rocosos en la zona templada que hay alrededor de las estrellas cercanas, más allá del alcance de los telescopios actuales, y les permitirá estudiar la composición de sus atmósferas.

Notas

[1] La comunidad astronómica apunta a estrellas frías, como las enanas rojas, porque su zona templada está mucho más cerca de la estrella que la de las estrellas más calientes, como el Sol. Esto significa que los planetas que orbitan dentro de su zona templada tienen períodos orbitales más cortos, lo que permite monitorearlos durante varios días o semanas, en lugar de años. Además, las enanas rojas son mucho menos masivas que el Sol, por lo que la atracción gravitacional de los planetas que la rodean las perturba con más facilidad y, por lo tanto, se tambalean con más fuerza.

[2] Es una práctica común en la ciencia nombrar a los exoplanetas por el nombre de su estrella anfitriona con una letra minúscula añadida: 'b' indica el primer planeta conocido, 'c' el siguiente, y así sucesivamente. Por lo tanto, el nombre Barnard b también se le dio a un candidato a planeta presuntamente detectado con anterioridad alrededor de la estrella de Barnard, pero no se ha podido confirmar su existencia.

Información adicional

Este trabajo de investigación se presenta en el artículo científico “A sub-Earth-mass planet orbiting Barnard’s star” que aparece en la revista Astronomy & Astrophysics(https://www.aanda.org/10.1051/0004-6361/202451311)

El equipo está formado por J. I. González Hernández (Instituto de Astrofísica de Canarias, España [IAC] y Departamento de Astrofísica, Universidad de La Laguna, España [IAC-ULL]); A. Suárez Mascareño (IAC e IAC-ULL); A. M. Silva (Instituto de Astrofísica y Ciencias del Espacio, Universidad de Oporto, Portugal [IA-CAUP] y Departamento de Física y Astronomía de la Facultad de Ciencias, Universidad de Oporto, Portugal [FCUP]); A. K. Stefanov (IAC e IAC-ULL); J. P. Faria (Observatorio de Ginebra, Universidad de Ginebra, Suiza [UNIGE]; IA-CAUP y FCUP), H. M. Tabernero (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos, Universidad Complutense de Madrid, España); A. Sozzetti (INAF - Observatorio Astrofísico de Torino [INAF-OATo] e Instituto Nacional de Astrofísica, Torino, Italia); R. Rebolo (IAC; IAC-ULL y Consejo Superior de Investigaciones Científicas, España [CSIC]); F. Pepe (UNIGE); N. C. Santos (IA-CAUP; FCUP); S. Cristiani (INAF - Observatorio Astronómico de Trieste, Italia [INAF-OAT] e Instituto de Física Fundamental del Universo, Trieste, Italia [IFPU]); C. Lovis (UNIGE); X. Dumusque (UNIGE); P. Figueira (UNIGE e IA-CAUP); J. Lillo-Box (Centro de Astrobiología, CSIC-INTA, Madrid, España [CAB]); N. Nari (IAC; Light Bridges S. L., Canarias, España e IAC-ULL); S. Benatti (INAF - Observatorio Astronómico de Palermo, Italia [INAF-OAPa]); M. J. Hobson (UNIGE); A. Castro-González (CAB); R. Allart (Instituto Trottier de Investigación de Exoplanetas, Universidad de Montreal, Canadá, y UNIGE); V. M. Passegger (Observatorio Astronómico Nacional de Japón, Hilo, EE.UU.; IAC; IAC-ULL y Observatorio de  Hamburgo, Hamburgo, Alemania); M.-R. Zapatero Osorio (CAB); V. Adibekyan (IA-CAUP y FCUP); Y. Alibert (Centro para el Espacio y la Habitabilidad, Universidad de Berna, Suiza, y  Exploración Espacial y Planetología, Instituto de Física, Universidad de Berna, Suiza); C. Allende Prieto (IAC e IAC-ULL); F. Bouchy (UNIGE); M. Damasso (INAF-OATo); V. D’Odorico (INAF-OAT e IFPU); P. Di Marcantonio (INAF-OAT); D. Ehrenreich (UNIGE); G. Lo Curto (Observatorio Europeo Austral, Santiago, Chile [ESO Chile]); R. Génova Santos (IAC e IAC-ULL); C. J. A. P. Martins (IA-CAUP y Centro de Astrofísica de la Universidad de Oporto, Portugal); A. Mehner (ESO Chile); G. Micela (INAF-OAPa); P. Molaro (INAF-OAT); N. Nunes (Instituto de Astrofísica y Ciencias del Espacio, Universidad de Lisboa, Portugal); E. Palle (IAC e IAC-ULL); S. G. Sousa (IA-CAUP y FCUP); y S. Udry (UNIGE).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Jonay I. González Hernández
Instituto de Astrofísica de Canarias
Tenerife, Spain
Teléfono: +34 922 605 751 or +34 922 605 200
Correo electrónico: jonay.gonzalez@iac.es

Alejandro Suárez Mascareño
Instituto de Astrofísica de Canarias
Tenerife, Spain
Teléfono: +34 658 778 954
Correo electrónico: alejandro.suarez.mascareno@iac.es

Serena Benatti
INAF - Osservatorio Astronomico di Palermo
Palermo, Italy
Teléfono: +39 091 233270
Correo electrónico: serena.benatti@inaf.it

João Faria
Département d’astronomie de l’Université de Genève
Geneve, Switzerland
Teléfono: +41 22 379 22 76
Correo electrónico: joao.faria@unige.ch

André M. Silva
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto
Porto, Portugal
Teléfono: +351 226 089 830
Correo electrónico: Andre.Silva@astro.up.pt

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Teléfono: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

viernes, 27 de septiembre de 2024

Un telescopio de ESO capta el mapa infrarrojo más detallado de nuestra Vía Láctea

Un telescopio de ESO capta el mapa infrarrojo más detallado de nuestra Vía Láctea

26 de Septiembre de 2024

Un equipo de astrónomos y astrónomas ha publicado un gigantesco mapa infrarrojo de la Vía Láctea que contiene más de 1.500 millones de objetos, el más detallado jamás realizado. Utilizando el telescopio VISTA del Observatorio Europeo Austral, el equipo monitoreó las regiones centrales de nuestra galaxia durante más de 13 años. Con 500 terabytes de datos, este es el proyecto de observación más grande jamás realizado con un telescopio de ESO.

"Hemos hecho tantos descubrimientos que hemos cambiado la visión de nuestra galaxia para siempre", afirma Dante Minniti, astrónomo de la Universidad Andrés Bello, en Chile, quien ha dirigido el proyecto general.

Este mapa récord comprende 200.000 imágenes tomadas por VISTA (Visible and Infrared Survey Telescope for Astronomy, telescopio de rastreo en los rangos visible e infrarrojo para astronomía de ESO). Ubicado en el Observatorio Paranal de ESO, en Chile, el objetivo principal del telescopio es mapear grandes áreas del cielo. El equipo utilizó la cámara infrarroja VIRCAM, instalada en VISTA, que puede mirar a través del polvo y el gas que impregna nuestra galaxia. Por lo tanto, es capaz de ver la radiación de los lugares más ocultos de la Vía Láctea, abriendo una ventana única a nuestro entorno galáctico.

Este gigantesco conjunto de datos [1] cubre un área del cielo equivalente a 8600 lunas llenas y contiene aproximadamente 10 veces más objetos que un mapa anterior publicado por el mismo equipo en 2012. Incluye estrellas recién nacidas (que a menudo están incrustadas en entornos cargados de polvo) y cúmulos globulares (densos grupos de millones de las estrellas más antiguas de la Vía Láctea). La capacidad de VISTA para observar en el rango infrarrojo implica que este telescopio también puede detectar objetos muy fríos, que brillan en estas longitudes de onda, como enanas marrones (estrellas "fallidas" que no tienen fusión nuclear sostenida) o planetas que flotan libremente y que no orbitan una estrella.

Las observaciones comenzaron en 2010 y finalizaron en el primer semestre de 2023, abarcando un total de 420 noches. Al observar cada parte del cielo muchas veces, el equipo pudo no solo determinar las ubicaciones de estos objetos, sino también rastrear cómo se mueven y si su brillo cambia. Cartografiaron estrellas cuya luminosidad cambia periódicamente y que pueden usarse como reglas cósmicas para medir distancias [2]. Esto nos ha dado una vista precisa en 3D de las regiones internas de la Vía Láctea que antes estaban ocultas por el polvo. El equipo también rastreó estrellas de hipervelocidad, estrellas que se mueven rápidamente y que se catapultaron desde la región central de la Vía Láctea después de un encuentro cercano con el agujero negro supermasivo que acecha allí.

El nuevo mapa contiene datos recopilados como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX). "El proyecto fue un esfuerzo monumental, que fue posible porque estábamos rodeados de un gran equipo", declara Roberto Saito, astrónomo de la Universidad Federal de Santa Catarina (Brasil) y autor principal del artículo sobre la finalización del proyecto publicado hoy en Astronomy & Astrophysics.

Los sondeos VVV y VVVX ya han dado lugar a más de 300 artículos científicos. Una vez finalizados los estudios, la exploración científica de los datos recopilados continuará durante las próximas décadas. Mientras tanto, el Observatorio Paranal de ESO se está preparando para el futuro: VISTA se actualizará con su nuevo instrumento 4MOST y el Very Large Telescope (VLT) de ESO recibirá su instrumento MOONS. Juntos, proporcionarán espectros de millones de los objetos estudiados en este trabajo, con innumerables descubrimientos por venir.

Notas

[1] El conjunto de datos es demasiado grande para publicarlo como una sola imagen, pero se puede acceder a los datos procesados y al catálogo de objetos en el Portal Científico de ESO.

[2] Una forma de medir la distancia a una estrella es comparando lo brillante que parece vista desde la Tierra con lo intrínsecamente brillante que es, pero a menudo no tenemos este último dato. Ciertos tipos de estrellas cambian su brillo periódicamente, y existe una conexión muy fuerte entre la rapidez con la que lo hacen y lo intrínsecamente luminosas que son. La medición de estas fluctuaciones permite a los astrónomos determinar qué tan luminosas son estas estrellas y, por lo tanto, a qué distancia se encuentran.

Información adicional

Este trabajo de investigación se ha presentado en un artículo titulado "The VISTA Variables in the Vía Láctea eXtended (VVVX) ESO public survey: Completion of the observations and legacy", publicado en Astronomy & Astrophysics (https://doi.org/10.1051/0004-6361/202450584). DOI de los datos: VVV, VVVX.

El equipo está compuesto por: R. K. Saito (Departamento de Física, Universidad Federal de Santa Catarina, Florianópolis, Brasil [UFSC]): M. Hempel (Instituto de Astrofísica, Dep. de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Providencia, Chile [ASTROUNAB] y Instituto Max Planck de Astronomía, Heidelberg, Alemania); J. Alonso-García (Centro de Astronomía, Universidad de Antofagasta, Antofagasta, Chile [CITEVA] e Instituto de Astrofísica Millennium, Providencia, Chile [MAS]); P. W. Lucas (Centro para la Investigación en Astrofísica, Universidad de Hertfordshire, Hatfield, Reino Unido [CAR]); D. Minniti (ASTROUNAB; Observatorio del Vaticano, Ciudad del Vaticano, Estado de la Ciudad del Vaticano [VO] y UFSC); S. Alonso (Departamento de Geofísica y Astronomía, CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Rivadavia, Argentina [UNSJ-CONICET]); L. Baravalle (Instituto de Astronomía Teórica y Experimental, Córdoba, Argentina [IATE-CONICET]; Observatorio Astronómico de Córdoba, Universidad Nacional de Córdoba, Argentina [OAC]); J. Borissova (Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaíso, Chile [IFA-UV] y MAS); C. Caceres (ASTROUNAB); A. N. Chené (Observatorio Gemini, Centro de Operaciones del Norte, Hilo, EE.UU.); N. J. G. Cross (Unidad de Astronomía de Amplio Campo, Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido); F. Duplancic (UNSJ-CONICET); E. R. Garro (Observatorio Europeo Austral, Vitacura, Chile [ESO Chile]); M. Gómez (ASTROUNAB); V. D. Ivanov (Observatorio Europeo Austral, Garching (cerca de Múnich) [ESO Germany]); R. Kurtev (IFA-UV y MAS); A. Luna (INAF – Observatorio Astronómico de Capodimonte, Napoles, Italia [INAF- OACN]); D. Majaess (Universidad de Monte San Vicente, Halifax, Canadá); M. G. Navarro (INAF – Observatorio Astronómico de Roma, Italia [INAF-OAR]); J. B. Pullen (ASTROUNAB); M. Rejkuba (ESO Germany); J. L. Sanders (Departamento de Física y Astronomía, University College de Londres, Londres, Reino Unido); L. C. Smith (Instituto de Astronomía, Universidad de Cambridge, Cambridge, Reino Unido); P. H. C. Albino (UFSC); M. V. Alonso (IATE-CONICET y OAC); E. B. Amôres (Departamento de Física, Universidad Estatal de Feira de Santana, Feira de Santana, Brasil); E. B. R. Angeloni (Observatorio Gemini/NOIRLab de NSF -National Science Foundation, Fundación Nacional de Ciencia-, La Serena, Chile [NOIRLab]); J. I. Arias (Departamento de Astronomía, Universidad de La Serena, La Serena, Chile [ULS]); M. Arnaboldi (ESO Germany); B. Barbuy (Universidad de Sao Paulo, Sao Paulo, Brasil); A. Bayo (ESO Germany); J. C. Beamin (ASTROUNAB y Fundación Chilena de Astronomía, Santiago, Chile); L. R. Bedin (Instituto Nacional de Astrofísica, Observatorio Astronómico de Padua, Padua, Italia [INAF-OAPd]); A. Bellini (Instituto de Ciencia del Telescopio Espacial, Baltimore, EE.UU. [STScI]); R. A. Benjamin (Departamento de Física, Universidad de Wisconsin-Whitewater, Whitewater, EE.UU.); E. Bica (Departamento de Astronomía, Instituto de Física, Porto Alegre, Brasil [IF – UFRGS]); C. J. Bonatto (IF – UFRGS); E. Botan (Instituto de Ciencias Naturales, Humanas y Sociales, Universidad Federal de Mato Grosso, Sinop, Brasil); V. F. Braga (INAF-OAR); D. A. Brown (Observatorio del Vaticano, Tucson, EE.UU.); J. B. Cabral (IATE-CONICET y Gerencia De Vinculación Tecnológica, Comisión Nacional de Actividades Espaciales, Córdoba, Argentina); D. Camargo (Colegio Militar de Porto Alegre, Ministerio da Defensa, Ejército Brasileño, Brasil); A. Caratti o Garatti (INAF- OACN); J. A. Carballo-Bello (Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile [IAI-UTA]); M. Catelan (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile [Instituto de Astrofísica UC]; MAS y Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile [AIUC]); C. Chavero (OAC y Consejo Nacional de Investigaciones Científica y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina [CONICET]); M. A. Chijani (ASTROUNAB); J. J. Clariá (OAC y CONICET); G. V. Coldwell (UNSJ-CONICET); C. Contreras Peña (Departamento de Física y Astronomía, Universidad Nacional de Seúl, Seúl, República de Corea e Instituto de Investigación en Ciencias Básicas, Universidad Nacional de Seúl, Seúl, República de Corea); C. R. Contreras Ramos (Instituto de Astrofísica UC y MAS); J. M. Corral-Santana (ESO Chile); C. C. Cortés (Departamento de Tecnologías Industriales, Facultad de Ingeniería, Universidad de Talca, Curicó, Chile); M. Cortés-Contreras (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos de la UCM, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, España); P. Cruz (Centro de Astrobiología, CSIC-INTA, Madrid, España [CAB]); I. V. Daza-Perilla (CONICET; IATE-CONICET y Facultad de Matemáticas, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina); V. P. Debattista (Universidad de Lancashire Central, Preston, Reino Unido); B. Dias (ASTROUNAB); L. Donoso (Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, San Juan, Argentina); R. D’Souza (VO); J. P. Emerson (Unidad de Astronomía, Escuela de Ciencias Físicas y Químicas, Universidad Queen Mary de Londres, Londres, Reino Unido); S. Federle (ESO Chile y ASTROUNAB); V. Fermiano (UFSC); J. Fernández (UNSJ-CONICET); J. G. Fernández-Trincado (Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile [IA-UCN]); T. Ferreira (Departamento de Astronomía, Universidad de Yale, New Haven, EE.UU.); C. E. Ferreira Lopes (Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó, Chile [INCT] y MAS); V. Firpo (NOIRLab); C. Flores-Quintana (ASTROUNAB y MAS); L. Fraga (Laboratorio Nacional de Astrofísica, Itajubá, Brasil); D.Froebrich (Centro de Astroísica y Ciencias Planetarias, Escuela de Física y Astronomía, Universidad de Kent, Canterbury, Reino Unido); D. Galdeano (UNSJ-CONICET); I. Gavignaud (ASTROUNAB); D. Geisler (Departamento de Astronomía, Universidad de Concepción, Chile [UdeC]; Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Chile [IMIP-ULS] y ULS); O. E.Gerhard (Instituto Max Planck de Física Extraterrestre, Alemania [MPE]); W. Gieren (UdeC); O. A. Gonzalez (Centro de Tecnología en Astronomía del Reino Unido, Real Observatorio de Edimburgo, Edimburgo, Reino Unido); L. V. Gramajo (OAC y CONICET); F. Gran (Universidad de la Costa Azul, Observatorio de la Costa Azul, CNRS, Laboratorio Lagrange, Niza, Francia [Lagrange]); P. M. Granitto (Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina); M. Griggio (INAF-OAPd; Departamento de Física, Universidad de Ferrara, Ferrara, Italia, y STScI); Z. Guo (IFA-UV y MAS); S. Gurovich (IATE-CONICET y Universidad del Oeste de Sídney, Kingswood, Australia); M. Hilker (ESO Germany); H. R. A. Jones (CAR); R. Kammers (UFSC); M. A. Kuhn (CAR); M. S. N. Kumar (Centro de Astrofísica de la Universidad de Oporto, Oporto, Portugal); R. Kundu (Miranda House, Universidad de Delhi, India y Centro Interuniversitario de Astronomía y Astrofísica, Pune, India); M. Lares (IATE-CONICET); M. Libralato (INAF-OAPd); E. Lima (Universidad Federal de Pampa, Uruguaiana, Brasil); T. J. Maccarone (Departamento de Física & Astronomía, Universidad Tecnológica de Texas, Lubbock, EE.UU.); P. Marchant Cortés (ULS); E. L. Martin (Instituto de Astrofísica de Canarias y Departamento de Astrofísica, Universidad de La Laguna, San Cristóbal de la Laguna, España); N. Masetti (Instituto Nacional de Astrofísica, Observatorio de Astrofísica y Ciencias del Espacio de Bolonia, Bolonia, Italia y ASTROUNAB); N. Matsunaga (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio, Japón); F. Mauro (IA-UCN); I. McDonald (Centro Jodrell Bank de Astrofísica, Universidad de Manchester, Reino Unido [JBCA]); A. Mejías (Departamento de Astronomía, Universidad de Chile, Las Condes, Chile); V. Mesa (IMIP-ULS; Asociación de Universidades de Investigación en Astronomía, Chile, Grupo de Astrofísica Extragaláctica-IANIGLA; CONICET, y Universidad Nacional de Cuyo, Mendoza, Argentina); F. P. Milla-Castro (ULS); J. H. Minniti (Departamento de Física y Astronomía, Universidad Johns Hopkins, Baltimore, EE.UU.); C. Moni Bidin (IA-UCN); K. Montenegro (Clínica Universidad de los Andes, Santiago, Chile); C. Morris (CAR); V. Motta (OAC); F. Navarete (Telescopio SOAR/NOIRLab de NSF, La Serena, Chile); C. Navarro Molina (Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Puerto Montt, Chile); F. Nikzat (Instituto de Astrofísica UC y MAS); J. L. NiloCastellón (IMIP-ULS y ULS); C. Obasi (IA-UCN y Centro Para Ciencias Básicas del Espacio, Universidad de Nigeria, Nsukka, Nigeria); M. Ortigoza-Urdaneta (Departamento de Matemática, Universidad de Atacama, Copiapó, Chile); T. Palma (OAC); C. Parisi (OAC e IATE-CONICET); K. Pena Ramírez (NOIRLab de NSF/Observatorio Vera C. Rubin, La Serena, Chile); L. Pereyra (IATE-CONICET); N. Pérez (UNSJ-CONICET); I. Petralia (ASTROUNAB); A. Pichel (Instituto de Astronomía y Física del Espacio, Ciudad Autónoma de Buenos Aires, Argentina [IAFE-CONICET]); G. Pignata (IAI-UTA); S. Ramírez Alegría (CITEVA); A. F. Rojas (Instituto de Astrofísica UC, Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile y CITEVA); D. Rojas (ASTROUNAB); A. Roman-Lopes (ULS); A. C. Rovero (IAFE-CONICET); S. Saroon (ASTROUNAB); E. O. Schmidt (OAC e IATE-CONICET); A. C. Schröder (MPE); M. Schultheis (Lagrange); M. A. Sgró (OAC); E. Solano (CAB); M. Soto (INCT); B. Stecklum (Observatorio Estatal de Thüringer, Tautenburg, Alemania); D. Steeghs (Departamento de Física, Universidad de Warwick, Reino Unido); M. Tamura (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio; Centro de Astrobiología, Tokio, Japón, y Observatorio Astronómico Nacional de Japón, Tokio, Japón); P. Tissera (Instituto de Astrofísica UC y AIUC), A. A. R. Valcarce (Departamento de Física, Universidad de Tarapacá, Chile); C. A. Valotto (IATE-CONICET y OAC); S. Vasquez (Museo Interactivo de la Astronomía, La Granja, Chile); C. Villalon (IATE-CONICET y OAC); S. Villanova (UdeC); F. Vivanco Cádiz (ASTROUNAB); R. Zelada Bacigalupo (North Optics, La Serena, Chile); A. Zijlstra (JBCA y Escuela de Ciencias Matemáticas y Físicas, Universidad Macquarie, Sídney, Australia); y M. Zoccali (Instituto de Astrofísica UC y MAS).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Roberto K. Saito
Universidade Federal de Santa Catarina
Florianópolis, Brazil
Correo electrónico: roberto.saito@ufsc.br

Dante Minniti
Universidad Andrés Bello
Santiago, Chile
Correo electrónico: vvvdante@gmail.com

Phil Lucas
University of Hertfordshire
Hartfield, United Kingdom
Correo electrónico: p.w.lucas@herts.ac.uk

Juan Carlos Muñoz-Mateos
ESO Media Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6176
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media