viernes, 27 de septiembre de 2024

Un telescopio de ESO capta el mapa infrarrojo más detallado de nuestra Vía Láctea

Un telescopio de ESO capta el mapa infrarrojo más detallado de nuestra Vía Láctea

26 de Septiembre de 2024

Un equipo de astrónomos y astrónomas ha publicado un gigantesco mapa infrarrojo de la Vía Láctea que contiene más de 1.500 millones de objetos, el más detallado jamás realizado. Utilizando el telescopio VISTA del Observatorio Europeo Austral, el equipo monitoreó las regiones centrales de nuestra galaxia durante más de 13 años. Con 500 terabytes de datos, este es el proyecto de observación más grande jamás realizado con un telescopio de ESO.

"Hemos hecho tantos descubrimientos que hemos cambiado la visión de nuestra galaxia para siempre", afirma Dante Minniti, astrónomo de la Universidad Andrés Bello, en Chile, quien ha dirigido el proyecto general.

Este mapa récord comprende 200.000 imágenes tomadas por VISTA (Visible and Infrared Survey Telescope for Astronomy, telescopio de rastreo en los rangos visible e infrarrojo para astronomía de ESO). Ubicado en el Observatorio Paranal de ESO, en Chile, el objetivo principal del telescopio es mapear grandes áreas del cielo. El equipo utilizó la cámara infrarroja VIRCAM, instalada en VISTA, que puede mirar a través del polvo y el gas que impregna nuestra galaxia. Por lo tanto, es capaz de ver la radiación de los lugares más ocultos de la Vía Láctea, abriendo una ventana única a nuestro entorno galáctico.

Este gigantesco conjunto de datos [1] cubre un área del cielo equivalente a 8600 lunas llenas y contiene aproximadamente 10 veces más objetos que un mapa anterior publicado por el mismo equipo en 2012. Incluye estrellas recién nacidas (que a menudo están incrustadas en entornos cargados de polvo) y cúmulos globulares (densos grupos de millones de las estrellas más antiguas de la Vía Láctea). La capacidad de VISTA para observar en el rango infrarrojo implica que este telescopio también puede detectar objetos muy fríos, que brillan en estas longitudes de onda, como enanas marrones (estrellas "fallidas" que no tienen fusión nuclear sostenida) o planetas que flotan libremente y que no orbitan una estrella.

Las observaciones comenzaron en 2010 y finalizaron en el primer semestre de 2023, abarcando un total de 420 noches. Al observar cada parte del cielo muchas veces, el equipo pudo no solo determinar las ubicaciones de estos objetos, sino también rastrear cómo se mueven y si su brillo cambia. Cartografiaron estrellas cuya luminosidad cambia periódicamente y que pueden usarse como reglas cósmicas para medir distancias [2]. Esto nos ha dado una vista precisa en 3D de las regiones internas de la Vía Láctea que antes estaban ocultas por el polvo. El equipo también rastreó estrellas de hipervelocidad, estrellas que se mueven rápidamente y que se catapultaron desde la región central de la Vía Láctea después de un encuentro cercano con el agujero negro supermasivo que acecha allí.

El nuevo mapa contiene datos recopilados como parte del sondeo VISTA Variables in the Vía Láctea (VVV) y su proyecto complementario, el sondeo VVV eXtended (VVVX). "El proyecto fue un esfuerzo monumental, que fue posible porque estábamos rodeados de un gran equipo", declara Roberto Saito, astrónomo de la Universidad Federal de Santa Catarina (Brasil) y autor principal del artículo sobre la finalización del proyecto publicado hoy en Astronomy & Astrophysics.

Los sondeos VVV y VVVX ya han dado lugar a más de 300 artículos científicos. Una vez finalizados los estudios, la exploración científica de los datos recopilados continuará durante las próximas décadas. Mientras tanto, el Observatorio Paranal de ESO se está preparando para el futuro: VISTA se actualizará con su nuevo instrumento 4MOST y el Very Large Telescope (VLT) de ESO recibirá su instrumento MOONS. Juntos, proporcionarán espectros de millones de los objetos estudiados en este trabajo, con innumerables descubrimientos por venir.

Notas

[1] El conjunto de datos es demasiado grande para publicarlo como una sola imagen, pero se puede acceder a los datos procesados y al catálogo de objetos en el Portal Científico de ESO.

[2] Una forma de medir la distancia a una estrella es comparando lo brillante que parece vista desde la Tierra con lo intrínsecamente brillante que es, pero a menudo no tenemos este último dato. Ciertos tipos de estrellas cambian su brillo periódicamente, y existe una conexión muy fuerte entre la rapidez con la que lo hacen y lo intrínsecamente luminosas que son. La medición de estas fluctuaciones permite a los astrónomos determinar qué tan luminosas son estas estrellas y, por lo tanto, a qué distancia se encuentran.

Información adicional

Este trabajo de investigación se ha presentado en un artículo titulado "The VISTA Variables in the Vía Láctea eXtended (VVVX) ESO public survey: Completion of the observations and legacy", publicado en Astronomy & Astrophysics (https://doi.org/10.1051/0004-6361/202450584). DOI de los datos: VVV, VVVX.

El equipo está compuesto por: R. K. Saito (Departamento de Física, Universidad Federal de Santa Catarina, Florianópolis, Brasil [UFSC]): M. Hempel (Instituto de Astrofísica, Dep. de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Providencia, Chile [ASTROUNAB] y Instituto Max Planck de Astronomía, Heidelberg, Alemania); J. Alonso-García (Centro de Astronomía, Universidad de Antofagasta, Antofagasta, Chile [CITEVA] e Instituto de Astrofísica Millennium, Providencia, Chile [MAS]); P. W. Lucas (Centro para la Investigación en Astrofísica, Universidad de Hertfordshire, Hatfield, Reino Unido [CAR]); D. Minniti (ASTROUNAB; Observatorio del Vaticano, Ciudad del Vaticano, Estado de la Ciudad del Vaticano [VO] y UFSC); S. Alonso (Departamento de Geofísica y Astronomía, CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Rivadavia, Argentina [UNSJ-CONICET]); L. Baravalle (Instituto de Astronomía Teórica y Experimental, Córdoba, Argentina [IATE-CONICET]; Observatorio Astronómico de Córdoba, Universidad Nacional de Córdoba, Argentina [OAC]); J. Borissova (Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaíso, Chile [IFA-UV] y MAS); C. Caceres (ASTROUNAB); A. N. Chené (Observatorio Gemini, Centro de Operaciones del Norte, Hilo, EE.UU.); N. J. G. Cross (Unidad de Astronomía de Amplio Campo, Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido); F. Duplancic (UNSJ-CONICET); E. R. Garro (Observatorio Europeo Austral, Vitacura, Chile [ESO Chile]); M. Gómez (ASTROUNAB); V. D. Ivanov (Observatorio Europeo Austral, Garching (cerca de Múnich) [ESO Germany]); R. Kurtev (IFA-UV y MAS); A. Luna (INAF – Observatorio Astronómico de Capodimonte, Napoles, Italia [INAF- OACN]); D. Majaess (Universidad de Monte San Vicente, Halifax, Canadá); M. G. Navarro (INAF – Observatorio Astronómico de Roma, Italia [INAF-OAR]); J. B. Pullen (ASTROUNAB); M. Rejkuba (ESO Germany); J. L. Sanders (Departamento de Física y Astronomía, University College de Londres, Londres, Reino Unido); L. C. Smith (Instituto de Astronomía, Universidad de Cambridge, Cambridge, Reino Unido); P. H. C. Albino (UFSC); M. V. Alonso (IATE-CONICET y OAC); E. B. Amôres (Departamento de Física, Universidad Estatal de Feira de Santana, Feira de Santana, Brasil); E. B. R. Angeloni (Observatorio Gemini/NOIRLab de NSF -National Science Foundation, Fundación Nacional de Ciencia-, La Serena, Chile [NOIRLab]); J. I. Arias (Departamento de Astronomía, Universidad de La Serena, La Serena, Chile [ULS]); M. Arnaboldi (ESO Germany); B. Barbuy (Universidad de Sao Paulo, Sao Paulo, Brasil); A. Bayo (ESO Germany); J. C. Beamin (ASTROUNAB y Fundación Chilena de Astronomía, Santiago, Chile); L. R. Bedin (Instituto Nacional de Astrofísica, Observatorio Astronómico de Padua, Padua, Italia [INAF-OAPd]); A. Bellini (Instituto de Ciencia del Telescopio Espacial, Baltimore, EE.UU. [STScI]); R. A. Benjamin (Departamento de Física, Universidad de Wisconsin-Whitewater, Whitewater, EE.UU.); E. Bica (Departamento de Astronomía, Instituto de Física, Porto Alegre, Brasil [IF – UFRGS]); C. J. Bonatto (IF – UFRGS); E. Botan (Instituto de Ciencias Naturales, Humanas y Sociales, Universidad Federal de Mato Grosso, Sinop, Brasil); V. F. Braga (INAF-OAR); D. A. Brown (Observatorio del Vaticano, Tucson, EE.UU.); J. B. Cabral (IATE-CONICET y Gerencia De Vinculación Tecnológica, Comisión Nacional de Actividades Espaciales, Córdoba, Argentina); D. Camargo (Colegio Militar de Porto Alegre, Ministerio da Defensa, Ejército Brasileño, Brasil); A. Caratti o Garatti (INAF- OACN); J. A. Carballo-Bello (Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile [IAI-UTA]); M. Catelan (Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile [Instituto de Astrofísica UC]; MAS y Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile [AIUC]); C. Chavero (OAC y Consejo Nacional de Investigaciones Científica y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina [CONICET]); M. A. Chijani (ASTROUNAB); J. J. Clariá (OAC y CONICET); G. V. Coldwell (UNSJ-CONICET); C. Contreras Peña (Departamento de Física y Astronomía, Universidad Nacional de Seúl, Seúl, República de Corea e Instituto de Investigación en Ciencias Básicas, Universidad Nacional de Seúl, Seúl, República de Corea); C. R. Contreras Ramos (Instituto de Astrofísica UC y MAS); J. M. Corral-Santana (ESO Chile); C. C. Cortés (Departamento de Tecnologías Industriales, Facultad de Ingeniería, Universidad de Talca, Curicó, Chile); M. Cortés-Contreras (Departamento de Física de la Tierra y Astrofísica & Instituto de Física de Partículas y del Cosmos de la UCM, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, España); P. Cruz (Centro de Astrobiología, CSIC-INTA, Madrid, España [CAB]); I. V. Daza-Perilla (CONICET; IATE-CONICET y Facultad de Matemáticas, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina); V. P. Debattista (Universidad de Lancashire Central, Preston, Reino Unido); B. Dias (ASTROUNAB); L. Donoso (Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, San Juan, Argentina); R. D’Souza (VO); J. P. Emerson (Unidad de Astronomía, Escuela de Ciencias Físicas y Químicas, Universidad Queen Mary de Londres, Londres, Reino Unido); S. Federle (ESO Chile y ASTROUNAB); V. Fermiano (UFSC); J. Fernández (UNSJ-CONICET); J. G. Fernández-Trincado (Instituto de Astronomía, Universidad Católica del Norte, Antofagasta, Chile [IA-UCN]); T. Ferreira (Departamento de Astronomía, Universidad de Yale, New Haven, EE.UU.); C. E. Ferreira Lopes (Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copiapó, Chile [INCT] y MAS); V. Firpo (NOIRLab); C. Flores-Quintana (ASTROUNAB y MAS); L. Fraga (Laboratorio Nacional de Astrofísica, Itajubá, Brasil); D.Froebrich (Centro de Astroísica y Ciencias Planetarias, Escuela de Física y Astronomía, Universidad de Kent, Canterbury, Reino Unido); D. Galdeano (UNSJ-CONICET); I. Gavignaud (ASTROUNAB); D. Geisler (Departamento de Astronomía, Universidad de Concepción, Chile [UdeC]; Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, Chile [IMIP-ULS] y ULS); O. E.Gerhard (Instituto Max Planck de Física Extraterrestre, Alemania [MPE]); W. Gieren (UdeC); O. A. Gonzalez (Centro de Tecnología en Astronomía del Reino Unido, Real Observatorio de Edimburgo, Edimburgo, Reino Unido); L. V. Gramajo (OAC y CONICET); F. Gran (Universidad de la Costa Azul, Observatorio de la Costa Azul, CNRS, Laboratorio Lagrange, Niza, Francia [Lagrange]); P. M. Granitto (Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina); M. Griggio (INAF-OAPd; Departamento de Física, Universidad de Ferrara, Ferrara, Italia, y STScI); Z. Guo (IFA-UV y MAS); S. Gurovich (IATE-CONICET y Universidad del Oeste de Sídney, Kingswood, Australia); M. Hilker (ESO Germany); H. R. A. Jones (CAR); R. Kammers (UFSC); M. A. Kuhn (CAR); M. S. N. Kumar (Centro de Astrofísica de la Universidad de Oporto, Oporto, Portugal); R. Kundu (Miranda House, Universidad de Delhi, India y Centro Interuniversitario de Astronomía y Astrofísica, Pune, India); M. Lares (IATE-CONICET); M. Libralato (INAF-OAPd); E. Lima (Universidad Federal de Pampa, Uruguaiana, Brasil); T. J. Maccarone (Departamento de Física & Astronomía, Universidad Tecnológica de Texas, Lubbock, EE.UU.); P. Marchant Cortés (ULS); E. L. Martin (Instituto de Astrofísica de Canarias y Departamento de Astrofísica, Universidad de La Laguna, San Cristóbal de la Laguna, España); N. Masetti (Instituto Nacional de Astrofísica, Observatorio de Astrofísica y Ciencias del Espacio de Bolonia, Bolonia, Italia y ASTROUNAB); N. Matsunaga (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio, Japón); F. Mauro (IA-UCN); I. McDonald (Centro Jodrell Bank de Astrofísica, Universidad de Manchester, Reino Unido [JBCA]); A. Mejías (Departamento de Astronomía, Universidad de Chile, Las Condes, Chile); V. Mesa (IMIP-ULS; Asociación de Universidades de Investigación en Astronomía, Chile, Grupo de Astrofísica Extragaláctica-IANIGLA; CONICET, y Universidad Nacional de Cuyo, Mendoza, Argentina); F. P. Milla-Castro (ULS); J. H. Minniti (Departamento de Física y Astronomía, Universidad Johns Hopkins, Baltimore, EE.UU.); C. Moni Bidin (IA-UCN); K. Montenegro (Clínica Universidad de los Andes, Santiago, Chile); C. Morris (CAR); V. Motta (OAC); F. Navarete (Telescopio SOAR/NOIRLab de NSF, La Serena, Chile); C. Navarro Molina (Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Puerto Montt, Chile); F. Nikzat (Instituto de Astrofísica UC y MAS); J. L. NiloCastellón (IMIP-ULS y ULS); C. Obasi (IA-UCN y Centro Para Ciencias Básicas del Espacio, Universidad de Nigeria, Nsukka, Nigeria); M. Ortigoza-Urdaneta (Departamento de Matemática, Universidad de Atacama, Copiapó, Chile); T. Palma (OAC); C. Parisi (OAC e IATE-CONICET); K. Pena Ramírez (NOIRLab de NSF/Observatorio Vera C. Rubin, La Serena, Chile); L. Pereyra (IATE-CONICET); N. Pérez (UNSJ-CONICET); I. Petralia (ASTROUNAB); A. Pichel (Instituto de Astronomía y Física del Espacio, Ciudad Autónoma de Buenos Aires, Argentina [IAFE-CONICET]); G. Pignata (IAI-UTA); S. Ramírez Alegría (CITEVA); A. F. Rojas (Instituto de Astrofísica UC, Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, Chile y CITEVA); D. Rojas (ASTROUNAB); A. Roman-Lopes (ULS); A. C. Rovero (IAFE-CONICET); S. Saroon (ASTROUNAB); E. O. Schmidt (OAC e IATE-CONICET); A. C. Schröder (MPE); M. Schultheis (Lagrange); M. A. Sgró (OAC); E. Solano (CAB); M. Soto (INCT); B. Stecklum (Observatorio Estatal de Thüringer, Tautenburg, Alemania); D. Steeghs (Departamento de Física, Universidad de Warwick, Reino Unido); M. Tamura (Departamento de Astronomía, Escuela de Posgrado de Ciencias, Universidad de Tokio; Centro de Astrobiología, Tokio, Japón, y Observatorio Astronómico Nacional de Japón, Tokio, Japón); P. Tissera (Instituto de Astrofísica UC y AIUC), A. A. R. Valcarce (Departamento de Física, Universidad de Tarapacá, Chile); C. A. Valotto (IATE-CONICET y OAC); S. Vasquez (Museo Interactivo de la Astronomía, La Granja, Chile); C. Villalon (IATE-CONICET y OAC); S. Villanova (UdeC); F. Vivanco Cádiz (ASTROUNAB); R. Zelada Bacigalupo (North Optics, La Serena, Chile); A. Zijlstra (JBCA y Escuela de Ciencias Matemáticas y Físicas, Universidad Macquarie, Sídney, Australia); y M. Zoccali (Instituto de Astrofísica UC y MAS).

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Roberto K. Saito
Universidade Federal de Santa Catarina
Florianópolis, Brazil
Correo electrónico: roberto.saito@ufsc.br

Dante Minniti
Universidad Andrés Bello
Santiago, Chile
Correo electrónico: vvvdante@gmail.com

Phil Lucas
University of Hertfordshire
Hartfield, United Kingdom
Correo electrónico: p.w.lucas@herts.ac.uk

Juan Carlos Muñoz-Mateos
ESO Media Officer
Garching bei München, Germany
Teléfono: +49 89 3200 6176
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

Los rayos X permitirán desviar asteroides de hasta cuatro kilómetros de diámetro

Los rayos X permitirán desviar asteroides de hasta cuatro kilómetros de diámetro

Científicos logran calentar y vaporizar en un laboratorio parte de la superficie de dos 'asteroides' de 12 milímetros, y que los gases resultantes actuaran como una especie de motor que desvió su trayectoria


Ricardo F. Colmenero,  23 septiembre 2024 - 20:10

La revista Nature Physics acaba de publicar un experimento sobre el desvío de un asteroide en un laboratorio usando rayos X. El objetivo es vaporizar parte de su superficie, haciendo que se calienten rápidamente, y que los gases resultantes actúen como una especie de motor que desvíe su trayectoria. Los resultados confirman que esta tecnología podría usarse para futuras misiones de defensa planetaria.
El doctor en ingeniería química del laboratorio estadounidense de Sandia, Nathan Moore, y sus colegas, utilizaron los rayos X de un dispositivo nuclear y los apuntaron hacia dos asteroides en el vacío, uno de cuarzo y otro de sílice fundido, cada uno de 12 milímetros de ancho. En ambos experimentos, Moore y sus colegas observaron que los pulsos de rayos X de un plasma de argón calentaban la superficie de los dos asteroides, lo que provocó una pequeña explosión seguida de una columna de vapor, que generó un impulso transferido a los objetivos de cuarzo y sílice, a velocidades de aproximadamente 69,5 y 70,3 metros por segundo, respectivamente.
Posteriormente, realizaron simulaciones numéricas que sugerían que objetos cercanos a la Tierra con un diámetro de alrededor de 4 kilómetros podrían desviarse con este método.

El hallazgo de 11 objetos más allá del cinturón de Kuiper sugiere que el Sistema Solar es mucho mayor de lo esperado

El hallazgo de 11 objetos más allá del cinturón de Kuiper sugiere que el Sistema Solar es mucho mayor de lo esperado

Los investigadores creen que podría haber un segundo cinturón, hasta ahora desconocido


JOSÉ MANUEL NIEVES, 22/09/2024 a las 13:12h.

Buscaban nuevos objetos en el cinturón de Kuiper, un anillo de escombros más allá de la órbita de Neptuno que contiene un gran número de cuerpos helados, incluido el planeta enano Plutón. Pero descubrieron algo inesperado: 11 objetos que se encuentran mucho más allá, en un lugar donde nadie habría pensado que pudiera haber algo. Se trata de un equipo de investigadores formado por científicos del telescopio japonés Subaru, en Hawai, y de la nave espacial New Horizons, de la NASA, y su hallazgo, publicado en dos artículos en 'Planetary Science Journal' y el servidor 'arXiv', podría significar, entre otras cosas, que el Sistema Solar es mucho mayor de lo que pensábamos. [...] La mayoría de los objetos transneptunianos (más allá de Neptuno) se han descubierto a entre 30 y 55 unidades astronómicas (UA), (una UA es la distancia entre el Sol y la Tierra, unos 150 millones de km). Más allá, la densidad de los objetos disminuye, hasta llegar al llamado 'acantilado de Kuiper', donde su densidad decrece drásticamente. Y precisamente ahí, entre 70 y 90 UA de distancia, es donde el equipo encontró los nuevos 11 objetos. New Horizons se encuentra actualmente a unas 60 UA de la Tierra. [...]
Podría ser, incluso, que 'ahí fuera' hubiera un segundo cinturón de Kuiper esperando a ser descubierto.

Clic AQUÍ para seguir leyendo y ver la imagen.

viernes, 20 de septiembre de 2024

Hallado Porfirión, el agujero negro que escupe los mayores chorros del universo

Hallado Porfirión, el agujero negro que escupe los mayores chorros del universo

El gigante lleva miles de millones de años influyendo en la evolución del cosmos a una escala jamás observada




Junto a colegas de Europa y Estados Unidos, la astrónoma Gabriela Calistro anuncia hoy el descubrimiento de los mayores chorros jamás observados en el universo. Los produce Porfirión, un agujero negro supermasivo desconocido hasta ahora que escupe dos haces en direcciones opuestas, y que juntos abarcan 23 millones de años luz. Es una distancia impensable hasta ahora que equivaldría a poner en fila 140 galaxias como la Vía Láctea, una detrás de otra. Porfirión recibe su nombre del mayor de los gigantes de la mitología griega. Se trata de un agujero negro supermasivo del tipo que existe en el centro de todas las galaxias, incluida la nuestra. Apareció cuando el universo tenía 6.300 millones de años, la mitad de su edad actual. La energía que contienen los dos chorros de Porfirión equivale a la que producirían billones de estrellas como el Sol, o al choque de dos cúmulos de galaxias. [...]
Las emanaciones de Porfirión se denominan chorros relativistas, pues las partículas que contiene —electrones, protones, átomos pesados— rozan la velocidad de la luz. [...] Las leyes de la física determinan que nada puede escapar a un agujero negro. Lo que cae en él no sale jamás. Los chorros relativistas se producen justo antes de ese momento por la descomunal fricción de toda la materia que gira alrededor. Parte de ella sale disparada con una enorme energía propulsada en dos estrechos haces. Es la radiación más potente del universo.

sábado, 14 de septiembre de 2024

Un equipo de astrónomos ha obtenido el vídeo más detallado logrado hasta ahora del gas burbujeante de la superficie de una estrella

Un equipo de astrónomos ha obtenido el vídeo más detallado logrado hasta ahora del gas burbujeante de la superficie de una estrella


11 de Septiembre de 2024

Por primera vez, un equipo de astrónomos ha captado imágenes de una estrella que no es el Sol con suficiente detalle como para seguir el movimiento del gas burbujeante de su superficie. Las imágenes de la estrella, R Doradus, se obtuvieron en julio y agosto de 2023 con el Atacama Large Millimeter/submillimeter Array (ALMA), un telescopio del que el Observatorio Europeo Austral (ESO) es socio. Muestran gigantescas burbujas de gas caliente, de 75 veces el tamaño del Sol, que aparecen en la superficie y se hunden de nuevo en el interior de la estrella más rápido de lo esperado.

"Es la primera vez que la superficie burbujeante de una estrella real se puede mostrar de este modo", [1] afirma Wouter Vlemmings, profesor de la Universidad Tecnológica de Chalmers (Suecia) y autor principal del estudio publicado en Nature"Nunca esperamos que los datos fueran de tan alta calidad que nos permitieran ver tantos detalles de la convección en la superficie estelar".

Las estrellas producen energía en sus núcleos a través de la fusión nuclear. Esta energía puede ser transportada hacia la superficie de la estrella en forma de enormes burbujas calientes de gas que luego se enfrían y se hunden (como en una lámpara de lava). Este movimiento de mezcla, conocido como convección, distribuye los elementos pesados formados en el núcleo, como el carbono y el nitrógeno, por toda la estrella. También se cree que es responsable de los vientos estelares que transportan estos elementos al cosmos para fabricar nuevas estrellas y planetas.

Hasta ahora, los movimientos de convección nunca se habían rastreado en detalle en estrellas que no fueran el Sol. Mediante el uso de ALMA, el equipo pudo obtener imágenes de alta resolución de la superficie de R Doradus en el transcurso de un mes. R Doradus es una estrella gigante roja, con un diámetro aproximadamente 350 veces el del Sol, ubicada a unos 180 años luz de distancia de la Tierra, en la constelación de Dorado. Su gran tamaño y proximidad a la Tierra hacen de esta estrella en un objetivo ideal para observaciones detalladas. Además, su masa es similar a la del Sol, lo que significa que R Doradus es probablemente bastante similar a cómo se verá nuestro Sol dentro de cinco mil millones de años, una vez que se convierta en una gigante roja.

"La convección crea la hermosa estructura granular que se ve en la superficie de nuestro Sol, pero que es difícil de ver en otras estrellas", agrega Theo Khouri, investigador de Chalmers y coautor del estudio. "Con ALMA, ahora no solo hemos podido ver directamente gránulos convectivos (¡con un tamaño 75 veces el de nuestro Sol!) sino que también hemos medido por primera vez su velocidad de movimiento".

Los gránulos de R Doradus parecen moverse en un ciclo de un mes, que es más rápido de lo que los científicos esperaban en relación a cómo funciona la convección en el Sol. "Todavía no sabemos cuál es la razón de la diferencia. Parece que la convección cambia a medida que una estrella envejece de maneras que aún no entendemos", declara Vlemmings. Observaciones como las que se hacen ahora de R Doradus nos están ayudando a entender cómo se comportan las estrellas como el Sol, incluso cuando crecen tan frías, grandes y burbujeantes como lo es R Doradus.

"Es espectacular que ahora podamos obtener imágenes directas de los detalles de la superficie de estrellas tan lejanas y observar una física que hasta ahora solo era observable en nuestro Sol", concluye Behzad Bojnodi Arbab, estudiante de doctorado en Chalmers que también participó en el estudio.

Información adicional

Esta investigación se ha presentado en el artículo titulado “One month convection timescale on the surface of a giant evolved star” que aparece en la revista Nature (doi:10.1038/s41586-024-07836-9).

El equipo está formado por W. Vlemmings (Universidad Tecnológica de Chalmers, Suecia [Chalmers]); T. Khouri (Chalmers); B. Bojnordi (Chalmers); E. De Beck (Chalmers); y M. Maercker (Chalmers).

El conjunto ALMA, (Atacama Large Millimeter/submillimeter Array) es una instalación astronómica internacional fruto de la colaboración entre ESO, la Fundación Nacional para la Ciencia de EE.UU. (NSF, National Science Foundation) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS, National Institutes of Natural Sciences) en cooperación con la República de Chile. ALMA está financiado por ESO en nombre de sus países miembros; por la NSF en cooperación con el Consejo Nacional de Investigación de Canadá (NRC, National Research Council) y el Consejo Nacional de Ciencia y Tecnología (NSTC, National Science and Technology Council) de Taiwán, y por el NINS, en cooperación con la Academia Sínica (AS) de Taiwán y el Instituto de Astronomía y Ciencias Espaciales de Corea (KASI, Korea Astronomy and Space Science Institute). La construcción y operaciones de ALMA están lideradas por ESO en nombre de sus países miembros; por el Observatorio Nacional de Radioastronomía (NRAO, National Radio Astronomy Observatory), gestionado por Associated Universities, Inc. (AUI), en representación de América del Norte; y por el Observatorio Astronómico Nacional de Japón (NAOJ, National Astronomical Observatory of Japan) en representación de Asia Oriental. El Observatorio Conjunto ALMA (JAO, Joint ALMA Observatory) proporciona al proyecto la unificación tanto del liderazgo como de la gestión de la construcción, puesta a punto y operaciones de ALMA.

El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Wouter Vlemmings
Chalmers University of Technology
Gothenburg, Sweden
Teléfono: +46 31 772 63 54
Correo electrónico: wouter.vlemmings@chalmers.se

Theo Kouri
Chalmers University of Technology
Gothenburg, Sweden
Teléfono: +46 31 772 6022
Correo electrónico: theo.khouri@chalmers.se

Behzad Bojnodi Arbab
Chalmers University of Technology
Gothenburg, Sweden
Correo electrónico: bojnordi@chalmers.se

Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Teléfono: +49 89 3200 6670
Móvil: +49 151 241 664 00
Correo electrónico: press@eso.org

José Miguel Mas Hesse (Contacto para medios de comunicación en España)
Red de Difusión Científica de ESO y Centro de Astrobiología (CSIC-INTA)
Madrid, Spain
Teléfono: +34 918131196
Correo electrónico: eson-spain@eso.org

Connect with ESO on social media

viernes, 6 de septiembre de 2024

Científicos encuentran señales de vida fuera de la Tierra: estas son las señales de radio que han detectado

Científicos encuentran señales de vida fuera de la Tierra: estas son las señales de radio que han detectado

Un estudio publicado en la revista 'Nature Astronomy' ha constatado que hay un exoplaneta que emite señales de radio muy potentes


La Razón, 06.09.2024 08:53

Un grupo de astrónomos ha logrado detectar recientemente unas señales de radio continuadas en un planeta ubicado a 12 años luz de la Tierra, tal y como recoge 'El Confidencial'. Al parecer, el exoplaneta tendría unas características similares a nuestro planeta y esta señal podría ser indicativo de que el planeta cuenta con una atmósfera y un campo magnético propio, tal y como señala el estudio publicado en la revista 'Nature Astronomy'. [...] De este modo, al parecer todo apunta a que estas señales son resultado de la colisión del plasma estelar de la estrella YZ Ceti con el campo magnético planetario del exoplaneta YZ Ceti b, lo que induce una emisión de radio.
Por ello, el astrónomo Pineda aseguró que, al principio, cuando pudieron ver el estallido quedaron maravillados por su impresionante belleza. De tal manera, que cuando lo volvieron a ver, no tuvieron ninguna duda de que lo que estaban observando realmente se trataba de un descubrimiento muy importante: posibles indicios de vida en otro planeta.

Clic AQUÍ para seguir leyendo y ver la imagen.

El impacto de un asteroide desplazó el eje de la luna más grande del Sistema Solar

El impacto de un asteroide desplazó el eje de la luna más grande del Sistema Solar

Ganímedes, la luna de Júpiter, es mayor incluso que el planeta Mercurio, y posee océanos de agua líquida bajo su superficie helada


Efe, 3 septiembre 2024 - 13:23

Hace unos 4.000 millones de años, un asteroide impactó contra Ganímedes, una de las lunas de Júpiter, desplazando su eje, lo que confirma que el objeto era 20 veces mayor que el que acabó con la era de los dinosaurios en la Tierra, según el hallazgo recogido este martes en la revista Scientific Reports. Ganímedes es la luna más grande del Sistema Solar, mayor incluso que el planeta Mercurio, y posee océanos de agua líquida que hay bajo su superficie helada. Al igual que la Luna de la Tierra, siempre muestra el mismo lado al planeta que orbita y, por tanto, también posee un lado lejano.
En gran parte de su superficie, Ganímedes está cubierta por surcos que forman círculos concéntricos alrededor de un punto concreto, lo que llevó a los investigadores a concluir que son el resultado de un gran impacto. [...] El investigador de la Universidad de Kobe publica ahora que el asteroide probablemente tenía un diámetro de unos 300 kilómetros, unas 20 veces mayor que el que impactó contra la Tierra hace 65 millones de años y puso fin a la era de los dinosaurios, y creó un cráter transitorio de entre 1.400 y 1.600 kilómetros de diámetro, provocando el desplazamiento del eje de rotación de la luna a su posición actual.