Doble detonación: una nueva imagen muestra los restos de una estrella destruida por dos explosiones
2 de Julio de 2025
Por primera vez, un equipo de astrónomos y astrónomas ha obtenido evidencia visual de que una estrella ha muerto con una doble detonación. Al estudiar los restos centenarios de la supernova SNR 0509-67.5 con el Very Large Telescope (VLT de ESO), del Observatorio Europeo Austral, han detectado patrones que confirman que su estrella sufrió dos explosivos estallidos. Publicado hoy, este descubrimiento muestra unas de las explosiones más importantes del universo bajo una nueva luz.
La mayoría de las supernovas son el resultado de la muerte explosiva de estrellas masivas, pero una variedad importante proviene de una fuente menos llamativa. Las enanas blancas, los núcleos pequeños e inactivos que quedan después de que estrellas como nuestro Sol quemen el combustible de su núcleo, pueden producir lo que la comunidad astronómica llama una supernova de Tipo Ia.
"Las explosiones de enanas blancas juegan un papel crucial en la astronomía", declara Priyam Das, estudiante de doctorado en la Universidad de Nueva Gales del Sur en Canberra (Australia), quien ha dirigido el estudio sobre SNR 0509-67.5, publicado en Nature Astronomy. Gran parte de nuestro conocimiento sobre cómo se expande el universo se basa en las supernovas de Tipo Ia, y también son la principal fuente de hierro en nuestro planeta, incluyendo el hierro en nuestra sangre. "Sin embargo, -añade- a pesar de su importancia y después de tanto tiempo, el enigma en torno al mecanismo exacto que desencadena su explosión sigue sin resolverse".
Todos los modelos que explican las supernovas de Tipo Ia comienzan con una enana blanca que forma parte de una pareja de estrellas. Si orbita lo suficientemente cerca de la otra estrella, la enana puede robar material de su compañera. En la teoría más establecida sobre las supernovas de Tipo Ia, la enana blanca acumula materia de su compañera hasta que alcanza una masa crítica, momento en el que sufre una sola explosión. Sin embargo, estudios recientes han insinuado que al menos algunas supernovas de Tipo Ia podrían explicarse mejor por una doble explosión desencadenada antes de que la estrella alcanzara esta masa crítica.
Ahora, este equipo ha captado una nueva imagen que demuestra que su corazonada era correcta: al menos algunas supernovas de Tipo Ia explotan a través de un mecanismo de "doble detonación". En este modelo alternativo, la enana blanca se rodea de una capa formada por el helio robado, que puede volverse inestable e incendiarse. Esta primera explosión genera una onda de choque que viaja alrededor de la enana blanca y hacia su interior, desencadenando una segunda detonación en el núcleo de la estrella, creando finalmente la supernova.
Hasta ahora, no había habido evidencia visual clara de una enana blanca sufriendo una doble detonación. Recientemente, la comunidad astronómica ha predicho que este proceso crearía un patrón distintivo o huella dactilar en los restos aún brillantes de la supernova, visible mucho después de la explosión inicial. La investigación sugiere que los restos de una supernova de este tipo contendrían dos capas separadas de calcio.
El equipo ha encontrado esta huella dactilar en los restos de una supernova. Ivo Seitenzahl, quien dirigió las observaciones y estaba en el Instituto de Estudios Teóricos de Heidelberg en Alemania cuando se realizó el estudio, declara que estos resultados son "una clara indicación de que las enanas blancas pueden explotar mucho antes de alcanzar el famoso límite de masa de Chandrasekhar, y que el mecanismo de 'doble detonación' ocurre en la naturaleza.” El equipo fue capaz de detectar estas capas de calcio (en azul en la imagen) en el remanente de supernova SNR 0509-67.5 mediante su observación con el instrumento MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico de unidades múltiples), instalado en el VLT de ESO. Esto proporciona una fuerte evidencia de que una supernova de Tipo Ia puede ocurrir antes de que su enana blanca madre alcance una masa crítica.
Las supernovas de Tipo Ia son clave para nuestra comprensión del universo. Se comportan de manera muy consistente, y su brillo predecible (sin importar cuán lejos estén), ayuda a la comunidad astronómica a medir distancias en el espacio. Usándolas como cinta métrica cósmica, se descubrió la expansión acelerada del universo, un descubrimiento que ganó el Premio Nobel de Física en 2011. Estudiar cómo explotan nos ayuda a entender por qué tienen un brillo tan predecible.
Das también tiene otra motivación para estudiar estas explosiones. "Esta evidencia tangible de una doble detonación no solo contribuye a resolver un antiguo misterio, sino que también ofrece un espectáculo visual", afirma, describiendo la "estructura bellamente estratificada" que crea una supernova. Para él, "revelar el funcionamiento interno de una explosión cósmica tan espectacular es increíblemente gratificante".
Información adicional
Esta investigación se ha presentado en un artículo publicado en Nature Astronomy titulado "Calcium in a supernova remnant shows the fingerprint of a sub-Chandrasekhar mass explosion".
El equipo está compuesto por P. Das (Universidad de Nueva Gales del Sur, Australia [UNSW] e Instituto de Estudios Teóricos de Heidelberg, Heidelberg, Alemania [HITS]); I. R. Seitenzahl (HITS); A. J. Ruiter (UNSW & HITS & OzGrav: Centro de Excelencia ARC para el Descubrimiento de Ondas Gravitacionales, Hawthorn, Australia y Centro de Excelencia ARC para la Astrofísica de Todo el Cielo en 3 Dimensiones); F. K. Röpke (HITS & Instituto de Estudios Teóricos, Heidelberg, Alemania & Instituto de Cálculo Astronómico, Heidelberg, Alemania); R. Pakmor (Instituto Max-Planck de Astrofísica, Garching, Alemania [MPA]); F. P. A. Vogt (Oficina Federal de Meteorología y Climatología – MeteoSwiss, Payerne, Suiza); C. E. Collins (Universidad de Dublín, Dublín, Irlanda & Centro GSI Helmholtz para la Investigación de Iones Pesados, Darmstadt, Alemania); P. Ghavamian (Universidad de Towson, Towson, EE.UU.); S. A. Sim (Universidad de la Reina de Belfast, Belfast, Reino Unido); B. J. Williams (Laboratorio de Astrofísica de Rayos X NASA/GSFC, Greenbelt, EE.UU.); S. Taubenberger (MPA y Universidad Técnica de Múnich, Garching, Alemania); J. M. Laming (Laboratorio de Investigación Naval, Washington, EE.UU.); J. Suherli (Universidad de Manitoba, Winnipeg, Canadá); R. Sutherland (Universidad Nacional de Australia, Weston Creek, Australia); y N. Rodríguez-Segovia (UNSW).
El Observatorio Europeo Austral (ESO) pone a disposición de la comunidad científica mundial los medios necesarios para desvelar los secretos del Universo en beneficio de todos. Diseñamos, construimos y operamos observatorios de vanguardia basados en tierra -utilizados por la comunidad astronómica para abordar preguntas emocionantes y difundir la fascinación por la astronomía- y promovemos la colaboración internacional en astronomía. Establecida como organización intergubernamental en 1962, hoy ESO cuenta con el apoyo de 16 Estados Miembros (Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Suecia y Suiza), junto con Chile, país anfitrión, y con Australia como socio estratégico. La sede de ESO y su planetario y centro de visitantes, el ESO Supernova, se encuentran cerca de Múnich (Alemania), mientras que el desierto chileno de Atacama, un lugar maravilloso con condiciones únicas para observar el cielo, alberga nuestros telescopios. ESO opera tres sitios de observación: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), y telescopios de rastreo como VISTA. También en Paranal, ESO albergará y operará el Cherenkov Telescope Array South, el observatorio de rayos gamma más grande y sensible del mundo. En Chajnantor, junto con socios internacionales, ESO opera ALMA, una instalación que observa los cielos en el rango milimétrico y submilimétrico. En Cerro Armazones, cerca de Paranal, estamos construyendo "el ojo más grande del mundo para mirar el cielo": el Telescopio Extremadamente Grande de ESO (ELT, Extremely Large Telescope). Desde nuestras oficinas en Santiago (Chile), apoyamos el desarrollo de nuestras operaciones en el país y nos comprometemos con los socios chilenos y con la sociedad chilena.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
- Trabajo de investigación
- Fotos del VLT
- Para periodistas: suscríbete para recibir nuestros comunicados embargados y en tu idioma
- Para científicos/as: ¿tienes una historia? Presenta tu investigación al departamento de comunicación de ESO
- Un nuevo análisis de ESO confirma los graves daños que causaría el complejo industrial que planea construirse cerca de Paranal
Contactos
Connect with ESO on social media
No hay comentarios:
Publicar un comentario